

Preservation in motion

Gegründet auf Tradition

Dem technischen Fortschritt verpflichtet

Schritt um Schritt mit unseren klinischen Partnern
Für den Erhalt der Beweglichkeit

Preservation in motion

Als Schweizer Unternehmen bekennt sich Mathys zu diesem Leitsatz und verfolgt ein Produktportfolio mit dem Ziel, traditionelle Philosophien in Bezug auf Materialien oder Design weiterzuentwickeln, um bestehende klinische Herausforderungen zu bewältigen. Dies spiegelt sich in unserer Bildsprache wider: Traditionelle Schweizer Aktivitäten in Verbindung mit sich ständig weiterentwickelnder Sportausrüstung.

Inhaltsverzeichnis

Ein	führung	4
1.	Indikationen und Kontraindikationen	5
2.	Präoperative Planung	6
3.	Operationstechnik	10
4.	Implantate	34
5.	Instrumente	41
6.	Röntgenschablonen	48
7.	Literatur	48
8	Symbole	40

Bemerkung

Machen Sie sich vor der Verwendung eines von Mathys AG Bettlach hergestellten Implantates mit der Handhabung der Instrumente, der produktspezifischen Operationstechnik und den im Beipackzettel aufgeführten Warnhinweisen, Sicherheitshinweisen und Empfehlungen vertraut. Nutzen Sie die von Mathys angebotenen Anwenderschulungen und verfahren Sie nach der empfohlenen Operationstechnik.

Einführung

Heutzutage gilt die Implantation eines künstlichen Hüftgelenks als Routineoperation. Hüftarthroplastik hat drei Ziele: Linderung der Schmerzen in der betroffenen Hüfte; Wiederherstellung der Gelenkanatomie und -funktion des Patienten; und Verbesserung des Bewegungsumfangs der Hüfte. Aufgrund gestiegener Lebenserwartung und Erweiterung der Indikationen für die Chirurgie steigt die Anzahl totaler oder partieller Hüftgelenkersatzoperationen weltweit kontinuierlich.

Zur Vermeidung von Komplikationen ist eine standardisierte, reproduzierbare und zuverlässige Operationstechnik zwingend erforderlich. Die Operationstechnik bietet einen schrittweisen Ansatz für die Planung und Implantation des Centris-Schaftes.

Centris-Schaft

Der Centris-Schaft bildet in Kombination mit einer Hüftkopfprothese und einer Hüftpfannenkomponente (zementiert/unzementiert) oder einem nativen Acetabulum ein System zur Hüftendoprothetik, das dazu dient, bei Patienten mit ausgewachsenem Skelett die Funktion des Hüftgelenks wiederherzustellen und/oder Schmerzen zu lindern. Der Centris-Schaft verfügt über eine hochglanzpolierte Stahloberfläche, einen rechteckigen Querschnitt, einen CCD-Winkel von 130° und einen 12/14-Konus.

Charnley-Kerboull-Philosophie

Das zementierte Schaftsystem beruht auf der Charnley-Kerboull-Philosophie. Die Knochenverankerung basiert auf einem klinisch bewährten Konzept mit «kanalfüllendem Schaft» ¹, bei dem der Schaft 0,7 mm kleiner als die Raspel ist. Somit füllt der Schaft den Markkanal weitgehend, richtet sich aus und stabilisiert sich beim Einsetzen.

Konstruktionsmerkmale und Vorteile der Charnley-Kerboull-Philosophie

- Der rechteckige Querschnitt sorgt für Rotationsstabilität ¹
- Die abgerundeten Kanten vermeiden Konzentration der Spannung in den Ecken des Zementmantels ¹
- Die doppelt verjüngte konische Form des hochglanzpolierten Schafts wandelt Scherkräfte in Druckkräfte um. Somit können schädliche Zug- und Biegekräfte auf die Schaft-Zement- und Knochen-Zement-Grenzflächen vermieden werden, wodurch eine stabile langfristige Fixierung des Implantats erreicht wird ¹
- Die hochglanzpolierte Oberfläche mit geringer Oberflächenrauheit reduziert das Risiko einer Rissbildung im Zementmantel ¹

1. Indikationen und Kontraindikationen

Indikationen

- Primäre oder sekundäre Coxarthrose
- Nekrose des Hüftkopfes
- Hüftkopf- und Oberschenkelhalsfrakturen
- Revisionsoperationen

Kontraindikation

- Vorliegen von Faktoren, die eine stabile Verankerung des Implantats gefährden:
 - Knochenverlust und/oder Knochendefekte
 - Ungenügende Knochensubstanz
 - Markkanal nicht geeignet für das Implantat
- Lokale und/oder allgemeine Infektionen
- Überempfindlichkeit gegenüber irgendeinem der verwendeten Werkstoffe
- Schwere Weichteil, Nerven oder Gefässinsuffizienz, die die Funktion und Langzeitstabilität des Implantats gefährdet
- Patienten, bei denen eine andere rekonstruktive Operation oder Behandlung erfolgversprechend ist

Für weitergehende Informationen lesen Sie bitte die Gebrauchsanweisung oder fragen Ihren Mathys-Vertreter.

2. Präoperative Planung

Die präoperative Planung kann unter Verwendung von Standardröntgenaufnahmen oder unter Zuhilfenahme eines digitalen Planungssystems durchgeführt werden. Das Hauptziel der Planung ist die Bestimmung des geeigneten Implantates, dessen Grösse und Position, mit dem Ziel, die individuelle Biomechanik des Hüftgelenkes wiederherzustellen. Damit können bereits vor der Operation mögliche Probleme erkannt werden. In den meisten Fällen lässt sich die Wiederherstellung der Biomechanik der Hüfte durch Rekonstruktion des ursprünglichen Hüftrotationszentrums, der Beinlänge sowie des Femur- und Acetabulumsoffsets erreichen ².

Des Weiteren dient die präoperative Planung als Grundlage für den intraoperativen Abgleich mittels Durchleuchtungskontrolle³.

Es wird empfohlen, die präoperative Planung in der Patientenakte zu dokumentieren.

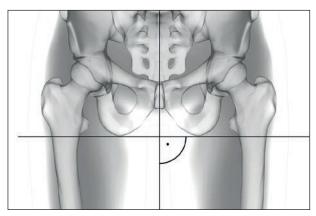


Abb. 1

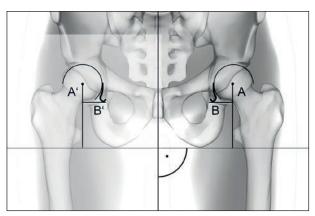


Abb. 2

Die Planung wird am besten auf einer Beckenübersichtsaufnahme durchgeführt, die bei stehendem Patienten angefertigt wird. Das Röntgenbild muss symmetrisch sein, zentriert auf die Symphyse des Schambeins und mit beiden Femora in etwa 20° Innenrotation. Der Vergrösserungsfaktor der Röntgenaufnahme kann mit einem Eichobjekt oder durch die Verwendung eines festen Film-Fokus-Abstandes und Positionierung des Patienten in einer festen Entfernung zwischen Film und Röntgenstrahlenquelle kontrolliert werden (Abb. 1).

Bemerkung

Bei stark deformierten Hüften sollte die Planung auf der gesunden Seite in Betracht gezogen werden, um diese anschliessend auf die betroffene Seite zu übertragen.

Die Rotationszentren der gesunden (A) und der betroffenen Hüfte (A') sind als der Mittelpunkt eines Kreises definiert, der den Femurkopf oder die Kavität des Acetabulums umschliesst.

Eine erste, horizontale Linie wird als Tangente an beide Sitzbeinhöcker gelegt, und eine zweite, vertikale Linie durch das Zentrum der Symphyse.

Bemerkung

Im Falle einer Beinlängenkorrektur kann die Anpassung der Beinlänge unter Verwendung der Sitzbeinhöcker als Referenz bereits jetzt in Betracht gezogen werden.

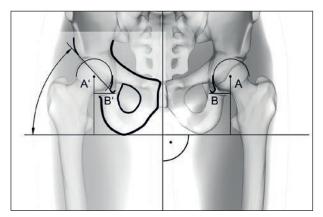


Abb. 3

Der acetabuläre Offset kann als der Abstand zwischen der Köhler'schen Tränenfigur (B oder B') und einer vertikalen Linie durch das Hüftrotationszentrum (A oder A') und parallel zur Symphyselinie definiert werden (Abb. 2).

Planung der Pfanne

Die Pfannenposition in Relation zum Becken muss die Acetabulumkonturen, das Hüftrotationszentrum, die Köhler'sche Tränenfigur und den erforderlichen Inklinationswinkel der Pfanne berücksichtigen (Abb. 3).

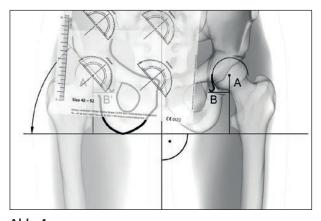


Abb. 4

Um eine geeignete Pfannengrösse zu finden, werden verschiedene Pfannenschablonen auf der Ebene der Kavität des Acetabulums positioniert, mit dem Ziel, das native Hüftrotationszentrum wiederherzustellen und zugleich ausreichenden Knochenkontakt sowohl auf der Ebene des Pfannendaches als auch auf der der Köhler'schen Tränenfigur zu ermöglichen (Abb. 4).

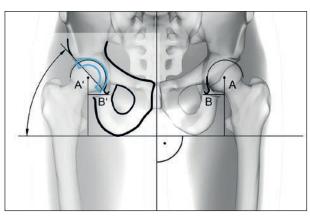


Abb. 5

Die Pfanne wird in das Acetabulum eingesetzt. Die Implantatposition wird in Relation zu den anatomischen Orientierungspunkten (Pfannendach, Köhler'sche Tränenfigur) bestimmt, und die Implantationstiefe wird notiert (Abb. 5).

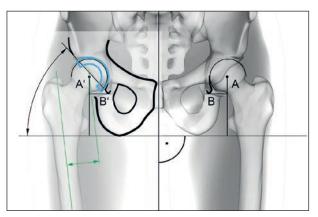


Abb. 6

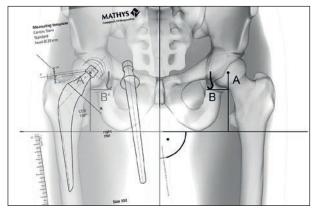


Abb. 7

Abschätzung des femoralen Offsets

Der Femuroffset ist als der kleinste Abstand zwischen der zentralen Längsachse des Femurs und dem Hüftrotationszentrum (Abb. 6) definiert.

Planung des Centris-Schafts

Das komplette Centris-Schaftsystem ist in 3 Versionen erhältlich: Dysplasie (D = 5 Grössen), Standard (S = 18 Grössen), Revision (R = 4 Grössen). In der Standardversion und der Revisionsversion stehen zwei verschiedene Arten von Implantaten zur Verfügung – ein Standardtyp und ein Langschafttyp. Der Schaftoffset ist proportional zur Schaftgrösse (Durchmesser), und für jede Schaftgrösse stehen verschiedene Halslängen zur Verfügung. Die erste Ziffer (1–5) des Schaftidentifizierungscodes gibt den Offset (Halslänge) an. Der mittlere Buchstabe (S, D, R) entspricht der Schaftversion, und die letzte Ziffer (1–3) bezeichnet den Implantatdurchmesser.

Zunächst wird eine Schaftschablone ausgewählt, die den ursprünglichen Femuroffset wiederherstellt. Der Schaft wird an der Femurachse ausgerichtet, die Schablonen mit zunehmendem Schaftoffset (Halslänge – erste Ziffer: 1 bis 5) werden dem Beckenröntgenbild überlagert, bis eine Übereinstimmung mit dem ursprünglichen Femuroffset gefunden ist. Dann werden innerhalb des gewählten Offset-Bereichs (erste Ziffer) eine Schaftversion (mittlerer Buchstabe: S, D, R) und -grösse (1 bis 3), die den Femurkanal ausfüllen, ausgewählt (Abb. 7).

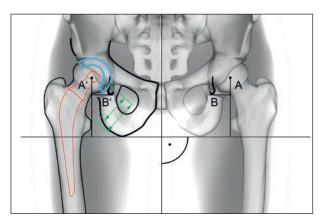


Abb. 8

Der richtige Schaftdurchmesser ist der Durchmesser, der den Femurkanal bis zu einem Abstand von 1–2 mm von der inneren Femurkortikalis auffüllt (Abb. 8).

Bemerkung

In den meisten Fällen kann eine adäquate Übereinstimmung gefunden werden, d. h. ein Schaft, der den Femurkanal innerhalb von 1–2 mm von der Kortikalis füllt und sowohl Femuroffset als auch Beinlänge wiederherstellt.

Andernfalls muss ein Kompromiss gefunden oder ein anderes Hüftsystem in Betracht gezogen werden.

Sobald der endgültige Schaft ausgewählt ist, werden Femurresektionsebene und Schafteinführtiefe festgelegt. Zur Reproduktion der Schafteinführtiefe während der Operation wird die Distanz von der Resektionslinie zum Trochanter minor, zum Trochanter major und zum Übergang zwischen Femurhals und Trochanter major bestimmt.

Operationstechnik

Man unterscheidet konventionelle Zugänge in Abhängigkeit von der Lagerung des Patienten und der Wahl des Zugangswegs von minimalinvasiven Zugängen, die das Ziel der Minimierung von Knochen- und Weichteilschädigung verfolgen. Der Centris-Schaft kann unter Verwendung sowohl konventioneller als auch minimalinvasiver Ansätze implantiert werden. Die Wahl eines spezifischen Zugangs sollte auf der Anatomie des Patienten und der Erfahrung und den Präferenzen des Operateurs basieren.

Für die Implantation des Centris-Schafts eignen sich zwei Operationstechniken: «Option Modulare Raspel» (Seite 12) und «Option Spongiosa-Reibahle» (Seite 19). Die Vorbereitung bis Seite 11 sowie die Implantation des Centris-Schafts ab Seite 27 sind für die beiden Operationstechniken identisch.

Abb. 9

Abb. 10

Femurosteotomie

Das Resektionsniveau des Schenkelhalses steht in Beziehung zu dem Abstand zwischen dem Trochanter minor und dem Trochanter major und wird gemäss der präoperativen Planung markiert (Abb. 9).

Bemerkung

Die Resektionsebene muss proximal der geplanten Einführungstiefe des Schaftes liegen. Dies erlaubt es, die Schenkelhalsresektion mit dem Kalkarfräser abzuschliessen.

Bemerkung

Wenn die anatomischen Verhältnisse die Entfernung des Kopfes nach einer einzelnen Durchtrennung des Halses verhindern, empfiehlt es sich, zuerst eine Doppelosteotomie durchzuführen und ein Fragment des Schenkelhalses zu entfernen. Danach wird der Hüftkopf mit einem Femurkopfauszieher entfernt.

Je nach Präferenz des Chirurgen sind die Präparation der Hüftpfanne und die Implantation der Pfanne gemäss der Operationstechnik durchzuführen (Abb. 10).

Bemerkung

Die Implantation der Pfanne ist in einer separaten Operationstechnik beschrieben, die von der Website der Mathys AG Bettlach heruntergeladen oder bei Ihrer lokalen Mathys-Vertretung angefordert werden kann.

Abb. 11

Abb. 12

Abb. 13

Präparation des Femurkanals

Eine orthograde Implantation ist nur nach ausreichender lateraler Eröffnung des Femurkanals möglich. Daher muss der Kastenmeissel (Abb. 11–12) etwas medial der Fossa piriformis angesetzt und parallel zur dorsolateralen Femurkortikalis mit vorsichtigen Hammerschlägen eingebracht werden.

Die Öffnung des Femurkanals mit einem Kastenmeissel sollte behutsam durchgeführt werden, um eine Fraktur des Trochanter major zu vermeiden.

Bemerkung

Achten Sie in diesem Schritt auf die gewünschte Anteversion des Schafts von ca. 10°–15°.

Der Kastenmeissel sollte nur 1–2 cm proximal in den Markraum eingeführt werden, sonst besteht Perforationsgefahr (Abb. 12).

Im Zweifelsfall kann vor Einsatz des Kastenmeissels ein scharfer Löffel zur Sondierung der inneren lateralen Femurkortikalis verwendet werden. So wird die Gefahr einer varischen oder valgischen Fehlstellung des Implantats reduziert.

Die weitere Eröffnung mit der Reibahle erleichtert das Einführen und die Zentrierung der nachfolgenden Raspeln oder Spongiosafräser (Abb. 13).

Dabei ist darauf zu achten, dass die Reibahle in ihrer zentralen, an der Femurachse ausgerichteten Position entlang der inneren Femurkortikalis als Führungselement zur Vorbereitung auf den orthograden Raspelvorgang bleibt.

Bemerkung

Bei diesem Vorgang darf die Spongiosa nicht vollständig entfernt werden.

Abb. 14

Abb. 15

Option 1: Präparation des Implantatbetts mit modularen Raspeln

Einrasten und Sichern der kleinsten Raspel im Raspelträger (Abb. 14).

Schrittweises Raspeln des Femurs.

Bemerkung

Es empfiehlt sich, mit der kleinsten Raspel zu beginnen und den Femurkanal anschliessend schrittweise bis zur präoperativ geplanten Grösse zu eröffnen (Abb. 15).

Die Raspeln werden entlang der lateralen Kortikalis mit moderaten Hammerschlägen in den Femurkanal eingebracht.

Bemerkung

Die Vorschubrichtung der Raspel muss mit der Femurachse übereinstimmen, um das Risiko einer Unterdimensionierung oder Fehlausrichtung des endgültigen Implantats zu reduzieren.

Durchmesser						
	1D1	-	152	-	-	-
	2D1	251	252	253	-	-
Offset	3D1	351	3S2	3S3	-	-
	4D1	4 S1	452	4S3	-	-
	5D1	-	-	-	5R1	5R2

Abb. 16

Das Centris-Hüftsystem ist in Standard-, Dysplasie-, Revisions- und Langschaftversionen verfügbar. In der Standardversion und in der Revisionsversion stehen jeweils zwei verschiedene Arten von Implantaten zur Verfügung – ein Standardtyp und ein Langschafttyp (weitere Informationen über den Langschafttyp finden Sie auf Seite 22). Sie sind wie folgt gekennzeichnet:

Standardversion	10 Grössen (1S2-4S3)
Dysplasieversion	5 Grössen (1D1–5D1)
Revisionsversion	2 Grössen (5R1-5R2)

Die erste Ziffer (1–5) im Schaftidentifizierungscode gibt die Halslänge an. Der Buchstabe in der Mitte (S, D, R) entspricht der Schaftversion, und die letzte Ziffer (1–3) bezeichnet den Implantatdurchmesser (Abb. 16).

Während des progredienten Raspelns wählen Sie die gewünschte Schaftversion (Standard, Dysplasie, Revision) und steigern zunächst den Raspeloffset auf die geplante Halslänge (erste Ziffer). Sobald der gewünschte Offset (Halslänge) erreicht ist, erhöhen Sie die Raspelgrösse (letzte Ziffer) bis zum geplanten Schaftdurchmesser.

Verwenden Sie keine Raspeln der Grösse 3, soweit nicht diese Grösse präoperativ als endgültige Implantatgrösse geplant worden ist. Bei Verwendung eines Centris-Langschafts sollten Sie keine Raspeln der Grösse 2 verwenden, es sei denn, diese Grösse wurde präoperativ geplant.

Beispiel

Geplanter Schaft: 4S2

Raspelreihenfolge: $1S2 \rightarrow 2S1 \rightarrow 3S1 \rightarrow 4S1 \rightarrow 4S2$

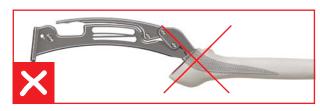


Abb. 17

Abb. 18

Abb. 19

Stellen Sie bei der progredienten Aufweitung des Markkanals mit zunehmenden Raspelgrössen sicher, dass Sie die Raspeln entlang der Achse des proximalen Femurs führen und die Anteversion des Schafts (Abb. 17) kontrollieren.

Bemerkung

Jede Raspel sollte vollständig bis auf das Niveau der Resektionsebene eingeführt werden, um ein Überstehen des endgültigen Implantats zu verhindern.

Nach dem Einbringen der grössten möglichen Raspel bis zur Resektionsebene oder einige Millimeter weiter distal entsprechend der Planung wird die Verbindung zum Raspelträger gelöst (Abb. 18–19).

Bemerkung

Sobald ein kortikaler Kontakt wahrgenommen wird, muss das Raspeln beendet werden, um mögliche Fissuren zu vermeiden.

Wenn die grösste mögliche Raspel kleiner als die geplante Schaftgrösse ist, kann eine frühzeitige Verklemmung der Raspel auf einen der folgenden Punkte zurückzuführen sein:

- 1) Falsches Einsetzen der Raspel, d. h. Varus-/ Valgus- oder Rotationsfehlstellung
- 2) Hohe Spongiosadichte, häufig bei jungen Patienten zu finden
- 3) Ungenaue Planung oder Verwendung eines falschen röntgenologischen Vergrösserungsfaktors

Das Einsetzen einer Raspel, die grösser ist als geplant, kann auf einen der folgenden Punkte zurückzuführen sein:

- 1) Eine Fraktur oder Fissur des proximalen Femurs
- 2) Ungenaue Planung oder Verwendung eines falschen röntgenologischen Vergrösserungsfaktors

Abb. 20

Abb. 21

In jedem dieser Fälle sollten die intraoperativen Befunde mit der präoperativen Planung verglichen werden, um die Ursache der Diskrepanz zu identifizieren. Erforderlichenfalls sind geeignete Massnahmen zu treffen, um die Ursache der Diskrepanz zu korrigieren.

Die Grössenangaben der Raspeln entsprechen den Implantatgrössen.

Bemerkung

Der korrekte Sitz der Raspel im Femur kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Bemerkung

Die modularen Centris-Raspeln sind im Vergleich zu den Centris-Schäften um 0,7 mm überdimensioniert, um nach der Implantation des endgültigen Schafts eine bestmögliche Gleichmässigkeit des Zementmantels zu erreichen.

Wenn die grösste mögliche Raspel eingesetzt ist, wird der Kalkarfräser über der Raspel positioniert und die Halsresektion abgeschlossen (Abb. 20–21). So passt der kleine mediale Kragen des Centris-Schafts auf den medialen Halsschnitt, was hinreichende Kontrolle der Einführungstiefe des endgültigen Implantats erlaubt.

Abb. 22

Abb. 23

Der ausgewählte Testkopf mit einem dem Pfanneninnendurchmesser entsprechenden Durchmesser wird auf der Raspel positioniert (Abb. 22–23).

Bemerkung

In Kombination mit der modularen Centris-Raspel dürfen nur die entsprechenden Testköpfe verwendet werden, da die Raspel einen Konus 11/12 anstelle von 12/14 besitzt:

Art. Nr.	Beschreibung
56.02.6004	Centris Testkopf f/ Raspel 22 S
56.02.6005	Centris Testkopf f/Raspel 22 M
56.02.6006	Centris Testkopf f/ Raspel 22 L
56.02.6014	Centris Testkopf f/ Raspel 28 S
56.02.6015	Centris Testkopf f/ Raspel 28 M
56.02.6016	Centris Testkopf f/ Raspel 28 L

Sowohl für das endgültige Implantat als auch für die Testprothese müssen die Standardtestköpfe mit den folgenden Artikelnummern verwendet werden:

Art. Nr.	Beschreibung
51.34.1061	Testkopf 22 S
51.34.1062	Testkopf 22 M
51.34.1063	Testkopf 22 L
51.34.1064	Testkopf 28 S
51.34.1065	Testkopf 28 M
51.34.1066	Testkopf 28 L
51.34.1067	Testkopf 28 XL
51.34.1068	Testkopf 28 XXL
51.34.1069	Testkopf 32 S
51.34.1070	Testkopf 32 M
51.34.1071	Testkopf 32 L
51.34.1072	Testkopf 32 XL
51.34.1073	Testkopf 32 XXL
51.34.1074	Testkopf 36 S
51.34.1075	Testkopf 36 M
51.34.1076	Testkopf 36 L
51.34.1077	Testkopf 36 XL
51.34.1078	Testkopf 36 XXL

Abb. 24

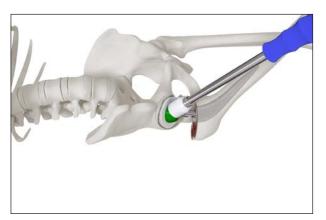


Abb. 25

Abb. 26

Bemerkung

Testköpfe zur Probereposition mit der Raspel sind nur in den Durchmessern 22,2 mm und 28 mm jeweils mit den Halslängen S, M und L erhältlich.

Bei grösseren Kopfdurchmessern oder längeren Halsausführungen (XL und XXL) verwenden Sie bitte eine Testprothese zu Testzwecken.

Einen Überblick über die Halslängen der Testköpfe finden Sie im Kapitel «Instrumente».

Es wird empfohlen, vor der Probereposition die Position des Rotationszentrums des Testkopfs und die Einführungstiefe der Raspel mit den Messungen aus der präoperativen Planung zu vergleichen.

Bemerkung

Der endgültige Kopfdurchmesser muss zum Pfanneninnendurchmesser passen.

Probereposition mit der endgültigen Raspel (Abb. 24–26).

Abb. 27

Abb. 28

Nach der Probereposition bewegen Sie das Hüftgelenk über seinen vollen Bewegungsumfang. Achten Sie auf Weichgewebe- und Hals-Pfannen-Impingement und beurteilen die Neigung des Implantats zur Dislokation bei Innen- und Aussenrotation in Flexion und Extension. Achten Sie auch auf angemessene Weichteilspannung (Abb. 27–28).

Bemerkung

Zu diesem Zeitpunkt ist es noch möglich, Schaftgrösse und -offset, die Halslänge des Testkopfs und bis zu einem gewissen Grad die Anteversion des Schafts zu ändern, falls erforderlich.

Bemerkung

Der korrekte Sitz der Raspel im Femur kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Abb. 29

Abb. 30



Abb. 31

Option 2: Präparation des Implantatbetts mit dem Spongiosafräser

Die zylindrischen Fräser werden nur zur Entfernung von Spongiosa verwendet. Bei Kontakt mit der Kortikalis das Fräsen einstellen (Abb. 29–30).

Ausgehend von der kleinsten Grösse werden die Fräser nacheinander eingeführt, und der Markraum wird behutsam vorbereitet (Abb. 31).

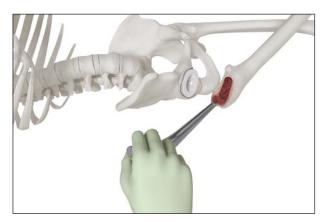


Abb. 32

Abb. 33

Abb. 34

Überprüfung des korrekten Sitzes durch Einführung eines Testschafts (Abb. 32).

Die Grössenangaben der Testprothese entsprechen den Implantatgrössen.

Bemerkung

Der korrekte Sitz der Testprothese im Femur kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Der ausgewählte Testkopf mit einem Durchmesser, der dem Innendurchmesser der Pfanne entspricht, wird auf dem Konus des Testschafts positioniert (Abb. 33–34).

Bemerkung

Sowohl für das endgültige Implantat als auch für die Testprothese müssen die Standardtestköpfe mit den folgenden Artikelnummern verwendet werden:

Art. Nr.	Beschreibung
51.34.1061	Testkopf 22 S
51.34.1062	Testkopf 22 M
51.34.1063	Testkopf 22 L
51.34.1064	Testkopf 28 S
51.34.1065	Testkopf 28 M
51.34.1066	Testkopf 28 L
51.34.1067	Testkopf 28 XL
51.34.1068	Testkopf 28 XXL
51.34.1069	Testkopf 32 S
51.34.1070	Testkopf 32 M
51.34.1071	Testkopf 32 L
51.34.1072	Testkopf 32 XL
51.34.1073	Testkopf 32 XXL
51.34.1074	Testkopf 36 S
51.34.1075	Testkopf 36 M
51.34.1076	Testkopf 36 L
51.34.1077	Testkopf 36 XL
51.34.1078	Testkopf 36 XXL

Abb. 35

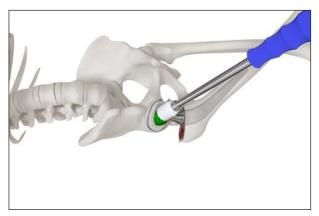


Abb. 36

Abb. 37

Es wird empfohlen, vor der Probereposition die Position des Rotationszentrums des Testkopfs und die Einführungstiefe des Testschafts mit den Messungen aus der präoperativen Planung zu vergleichen.

Bemerkung

Der endgültige Kopfdurchmesser muss zum Pfanneninnendurchmesser passen.

Probereposition mit dem Testschaft (Abb. 35–36).

Nach der Probereposition bewegen Sie das Hüftgelenk über seinen vollen Bewegungsumfang. Achten Sie auf Weichgewebe- und Hals-Pfannen-Impingement und beurteilen die Neigung des Implantats zur Dislokation bei Innen- und Aussenrotation in Flexion und Extension. Achten Sie auch auf angemessene Weichteilspannung (Abb. 37).

Bemerkung

Zu diesem Zeitpunkt ist es noch möglich, Schaftgrösse und -offset, die Halslänge des Testkopfs und bis zu einem gewissen Grad die Anteversion des Schafts zu ändern, falls erforderlich.

Bemerkung

Der korrekte Sitz der Testprothese im Femur kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Abb. 38

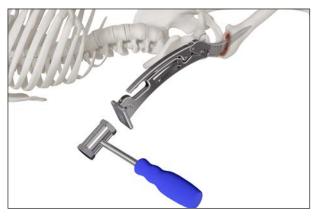


Abb. 39

Zusätzliche Informationen zur Verwendung des Centris-Langschafts

Bemerkung

Das Vorgehen zur Implantation eines Centris-Langschafts beginnt mit dem Raspelprozess, bevor der Femurkanal mit der flexiblen Reibahle distal präpariert wird.

Schrittweises Raspeln des Femurs (Abb. 38).

Bemerkung

Die Centris-Langschäfte sind nur in den folgenden Versionen erhältlich:

	180 mm	230 mm	
3S1	✓	✓	
3S2	✓	✓	
4S1	✓	✓	
452	✓	✓	

	175 mm	225 mm
5R1	✓	✓

Bemerkung

Es empfiehlt sich, mit der kleinsten Raspel zu beginnen und den Femurkanal anschliessend schrittweise bis zur präoperativ geplanten Grösse zu eröffnen (Abb. 39).

Die Raspeln werden mit moderaten Hammerschlägen entlang der lateralen Kortikalis in den Femurkanal eingebracht.

Bemerkung

Die Vorschubrichtung der Raspel muss mit der Femurachse übereinstimmen, um das Risiko einer Unterdimensionierung oder Fehlausrichtung des endgültigen Implantats zu reduzieren.

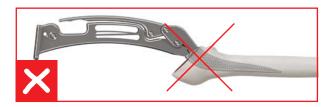


Abb. 40

Abb. 41

Abb. 42

Während des progredienten Raspelns wählen Sie die gewünschte Schaftversion und steigern zunächst den Raspeloffset auf die geplante Halslänge (erste Ziffer). Sobald der gewünschte Offset (Halslänge) erreicht ist, wird die Raspelgrösse (letzte Ziffer) auf den geplanten Schaftdurchmesser erhöht.

Verwenden Sie keine Raspeln der Grösse 2, soweit nicht diese Grösse präoperativ als endgültige Implantatgrösse geplant worden ist.

Beispiel

Geplanter Schaft: 4S2

Raspelreihenfolge: $1S2 \rightarrow 2S1 \rightarrow 3S1 \rightarrow 4S1 \rightarrow 4S2$

Stellen Sie während der progredienten Aufweitung des Markkanals mit zunehmenden Raspelgrössen sicher, dass Sie die Raspeln entlang der Achse des proximalen Femurs führen und die Anteversion des Schafts (Abb. 40) kontrollieren.

Bemerkung

Jede Raspel sollte vollständig bis auf die Ebene der Resektionsebene eingeführt werden, um ein Überstehen des endgültigen Implantats zu verhindern.

Wenn die grösste mögliche Raspel an Ort und Stelle ist, wird der Kalkarfräser über der Raspel positioniert, und die Halsresektion wird abgeschlossen (Abb. 41–42).

So passt der kleine mediale Kragen des Centris-Langschafts auf den medialen Halsschnitt, was hinreichende Kontrolle der Einführungstiefe des endgültigen Implantats erlaubt.

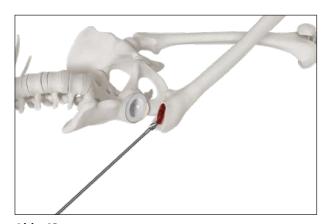
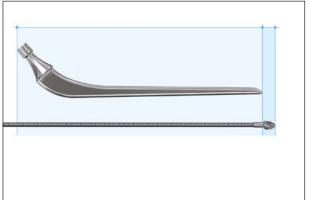


Abb. 43

Abb. 44


Abb. 45

Nach dem Raspeln verwenden Sie die zylindrischen flexiblen Reibahlen nur zum Entfernen von distaler Spongiosa. Bei Kontakt mit der Kortikalis das Reiben einstellen (Abb. 43–45).

	ftgrösse -länge	Empfohlene Grösse der letzten flexiblen Reibahle
3S1	180 mm	10
3S1	230 mm	10
3S2	180 mm	10
3S2	230 mm	10
451	180 mm	11
4S1	230 mm	11
4S2	180 mm	11
4S2	230 mm	11
5R1	175 mm	11/12
5R1	225 mm	11/12

Bemerkung

Markieren Sie die Länge der Testprothese auf der flexiblen Reibahle, um die Tiefe des Implantats zu überprüfen (Abb. 46).

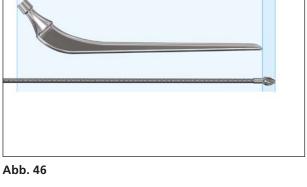


Abb. 47

Abb. 48

Überprüfung des korrekten Sitzes durch Einführung eines Centris-Probelangschafts (Abb. 47-48).

Bemerkung

Die Grössenangaben der Testprothese entsprechen den Implantatgrössen.

Bemerkung

Der korrekte Sitz der Testprothese im Femur kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Der ausgewählte Testkopf mit einem Durchmesser, der dem Innendurchmesser der Pfanne entspricht, wird auf dem Konus des Testschafts positioniert

Sowohl für das endgültige Implantat als auch für die Testprothese müssen die Standardtestköpfe mit den folgenden Artikelnummern verwendet werden:

3	
Art. Nr.	Beschreibung
51.34.1061	Testkopf 22 S
51.34.1062	Testkopf 22 M
51.34.1063	Testkopf 22 L
51.34.1064	Testkopf 28 S
51.34.1065	Testkopf 28 M
51.34.1066	Testkopf 28 L
51.34.1067	Testkopf 28 XL
51.34.1068	Testkopf 28 XXL
51.34.1069	Testkopf 32 S
51.34.1070	Testkopf 32 M
51.34.1071	Testkopf 32 L
51.34.1072	Testkopf 32 XL
51.34.1073	Testkopf 32 XXL
51.34.1074	Testkopf 36 S
51.34.1075	Testkopf 36 M
51.34.1076	Testkopf 36 L
51.34.1077	Testkopf 36 XL
51.34.1078	Testkopf 36 XXL

Einen Überblick über die Halslängen der Testköpfe finden Sie im Kapitel «Instrumente».



Abb. 49

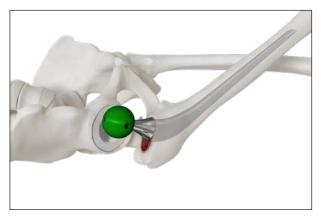


Abb. 50

Abb. 51

Es wird empfohlen, vor der Probereposition die Position des Rotationszentrums des Testkopfs und die Einführungstiefe des Testschafts mit den Messungen aus der präoperativen Planung zu vergleichen.

Bemerkung

Der endgültige Kopfdurchmesser muss zum Pfanneninnendurchmesser passen.

Probereposition mit dem Testschaft

Nach der Probereposition bewegen Sie das Hüftgelenk über seinen vollen Bewegungsumfang. Achten Sie auf Weichgewebe- und Hals-Pfannen-Impingement und beurteilen die Neigung des Implantats zur Dislokation bei Innen- und Aussenrotation in Flexion und Extension. Achten Sie auch auf angemessene Weichteilspannung (Abb. 51).

Bemerkung

Zu diesem Zeitpunkt ist es noch möglich, Schaftgrösse und -offset, die Halslänge des Testkopfs und bis zu einem gewissen Grad die Anteversion des Schafts zu ändern, falls erforderlich.

Bemerkung

Der korrekte Sitz der Testprothese im Femur kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Auswahl und Einsetzen der Markraumsperre

Der Innendurchmesser des Markkanals kann präoperativ an Röntgenaufnahmen des proximalen Femurs oder mit einem Messstössel zur Bestimmung der Position und Grösse der Markraumsperre beurteilt werden.

Bemerkung

Gemessen wird an der medialen Linie, die die Resektionsebene angibt.

Die Markraumsperre sollte 1 cm distal der Prothesenspitze gesetzt werden.

Die Markraumsperre aus autologer Spongiosa, Polyethylen oder resorbierbarem synthetischem Material wird entsprechend der Höhe der Probeimplantation eingesetzt.

Bemerkung

Die Instrumente zur Bestimmung der Grösse der Markraumsperre sind nicht im Standardinstrumentarium enthalten und daher separat zu beziehen.

Für weitere Informationen zur Mathys-Markraumsperre erkundigen Sie sich bitte bei Ihrer lokalen Mathys-Vertretung.

Endgültige Vorbereitung des Markraums

Vor der Zementierung muss der Markraum von losen Knochenresten und Fett gereinigt werden, die eine richtige Verzahnung des Zements mit der Spongiosa des proximalen Femurs beeinträchtigen könnten. Dies kann mit einer Kürette oder Bürste und umfangreicher Jet-Lavage erreicht werden. Es ist wichtig, die gut an der inneren Kortikalis fixierte Spongiosaschicht zu erhalten, um eine richtige Verzahnung des Zements bei der Zementverdichtung zu ermöglichen.

Anschliessend wird das Prothesenbett behutsam ausgesaugt und getrocknet. Parallel dazu wird der Knochenzement angemischt.

Abb. 52

Retrograde Zementiertechnik

Die lange Düse der mit Zement gefüllten Zementpistole wird gegen die Zementsperre eingeführt. Während der retrograden Injektion des Zements in den Markraum wird die Düse nach und nach zurückgezogen, bis der Kanal bis zur Resektionsebene gefüllt ist (Abb. 52).

Antegrade Zementiertechnik

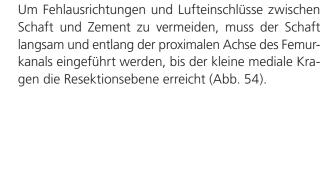
Zuerst wird ein Entlüftungsdrain gegen die Zementsperre eingeführt. Dann wird die kurze Düse der mit Zement gefüllten Zementpistole in den proximalen Femur eingeführt, und der Zement wird bis zur Resektionsebene in den Markraum injiziert. Der Entlüftungsdrain verhindert, dass Luft, Blut und Fett von der Zementsperre eingeschlossen werden, und muss vor der Verdichtung des Zements entfernt werden.

Verdichtung des Zements

Um die Verzahnung des Zements zu verbessern, wird eine proximale Abdichtung verwendet, um den proximalen Femurkanal abzudecken, und zusätzlicher Zement wird unter Druck mit der Zementpistole injiziert.

Bemerkung

Die Zementiertechnik erfordert spezielle Vorsichtsmassnahmen (Vorbereitung des Markraums, Zementiertechnik, Zusammenarbeit mit dem Anästhesisten usw.), die in der entsprechenden Gebrauchsanweisung für den Zement beschrieben sind.


Abb. 53

Implantation des Centris-Schafts

Der ausgewählte Centris-Schaft wird zusammen mit dem Konusschutz ohne Hammer mit dem Schafteinführinstrument verbunden (Abb. 53) und in den mit Zement gefüllten Markraum eingeführt.

Abb. 54

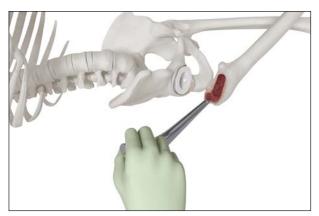


Abb. 55

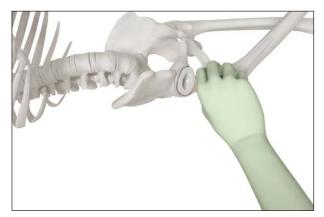


Abb. 56

Bemerkung

Alternativ kann der Schaft von Hand eingeführt und mit dem Schafteinführinstrument in Position gehalten werden (Abb. 55–58).

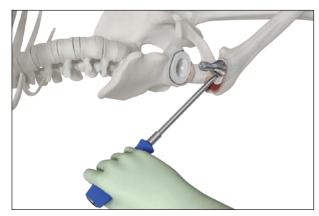


Abb. 57

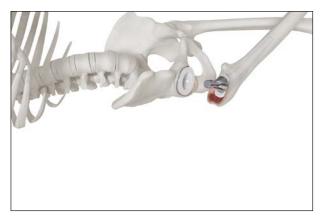


Abb. 58

Entfernen Sie allen überschüssigen Knochenzement und halten den Schaft mit dem Schafteinführinstrument in einer stabilen Position, bis der Knochenzement vollständig ausgehärtet ist (Abb. 59).

Abb. 59

Lösen Sie das Schafteinführinstrument und entfernen den Konusschutz (Abb. 60–61).

Abb. 60

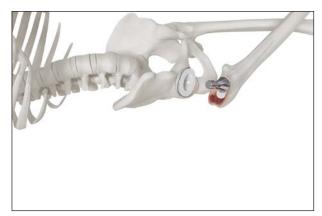


Abb. 61

Abb. 62

Abb. 63

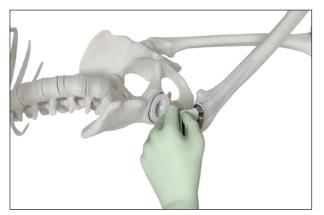


Abb. 64

Nach Aushärten des Zements kann mit den unterschiedlich langen Testköpfen zur Überprüfung des Bewegungsumfanges und der Bandspannung eine weitere Probereposition mit dem Implantat an seiner Position durchgeführt werden (Abb. 62–63).

Bemerkung

Zu diesem Zeitpunkt kann nur noch die Halslänge des Prothesenkopfes verändert werden, falls erforderlich.

Bemerkung

Einen Überblick über die Halslängen von Implantatund Testköpfen finden Sie im Kapitel «Implantate» und «Instrumente».

Bemerkung

Der Kopfdurchmesser muss immer dem Innendurchmesser der Pfanne entsprechen.

Um Komplikationen an der Schaft/Kopf-Schnittstelle zu vermeiden, muss der Schaftkonus vor der Montage des endgültigen Kopfes trocken und frei von Fremdkörpern (z. B. Gewebeteilen, Knochen- oder Zementpartikeln) sein (Abb. 64–65).

Abb. 65

Abb. 66

Abb. 67

Reposition des Gelenks (Abb. 66-67).

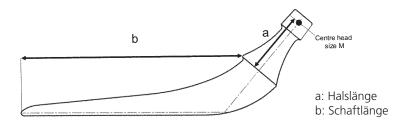
Bemerkung

Der korrekte Sitz der Implantate kann zusätzlich unter Bildwandlerkontrolle überprüft werden.

Der Gelenkraum muss frei von Zement- oder Knochenpartikeln sein.

Je nach Zugang werden die Muskelansätze wieder fixiert, und die Wunde wird Schicht für Schicht geschlossen.

Entfernung des Centris-Schafts


Im Falle einer Revision kann der Centris-Schaft mit universellen Schaftausschlaginstrumenten und allgemeinen Instrumenten zur Entfernung von Knochenzement entfernt werden.

Weitere Informationen zur Schaftrevision und zu Extraktionsinstrumenten erhalten Sie von Ihrer lokalen Mathys-Vertretung.

Im Falle einer intraoperativen Entfernung des endgültigen Schafts ist eine erneute Implantation desselben Schafts nicht zulässig – ein neuer Schaft muss verwendet werden.

4. Implantate

Centris-Dysplasieschaft, zementiert

Art. Nr.	Grösse	Halslänge (a)	Schaftlänge (b)
56.11.0055	1D1	28 mm	105 mm
56.11.0056	2D1	32 mm	112 mm
56.11.0057	3D1	35 mm	120 mm
56.11.0058	4D1	39 mm	129 mm
56.11.0059	5D1	47 mm	128 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm CCD-Winkel: 130°

Centris-Standardschaft, zementiert

Art. Nr.	Grösse	Halslänge (a)	Schaftlänge (b)
56.11.0060	152	28 mm	104 mm
56.11.0061	2S1	32 mm	112 mm
56.11.0062	2S2	32 mm	113 mm
56.11.0063	2S3	32 mm	113 mm
56.11.0064	3S1	35 mm	121 mm
56.11.0065	3S2	35 mm	122 mm
56.11.0066	3S3	35 mm	123 mm
56.11.0067	4S1	39 mm	128 mm
56.11.0068	4S2	39 mm	129 mm
56.11.0069	4S3	39 mm	129 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm CCD-Winkel: 130°

Centris-Revisionsschaft, zementiert

Art. Nr.	Grösse	Halslänge (a)	Schaftlänge (b)
56.11.0070	5R1	47 mm	131 mm
56.11.0071	5R2	47 mm	133 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm CCD-Winkel: 130°

Centris Standard-Langschaft, zementiert

Art. Nr.	Grösse	Halslänge (a)	Schaftlänge (b)
56.11.0072	3S1	35 mm	180 mm
56.11.0074	3S2	35 mm	180 mm
56.11.0076	451	39 mm	180 mm
56.11.0078	452	39 mm	180 mm
56.11.0073	3S1	35 mm	230 mm
56.11.0075	3S2	35 mm	230 mm
56.11.0077	451	39 mm	230 mm
56.11.0079	4S2	39 mm	230 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm CCD-Winkel: 130°

Centris Revisions-Langschaft, zementiert

Art. Nr.	Grösse	Halslänge (a)	Schaftlänge (b)
56.11.0080	5R1	47 mm	175 mm
56.11.0081	5R1	47 mm	225 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm CCD-Winkel: 130°

Hüftköpfe

Hüftkopf, Stahl

Art. Nr.	AD	Halslän	ge
54.11.1031	22,2 mm	S	- 3 mm
54.11.1032	22,2 mm	М	0 mm
54.11.1033	22,2 mm	L	+ 3 mm
2.30.410	28 mm	S	-4 mm
2.30.411	28 mm	М	0 mm
2.30.412	28 mm	L	+ 4 mm
2.30.413	28 mm	XL	+8mm
2.30.414	28 mm	XXL	+ 12 mm
2.30.400	32 mm	S	-4 mm
2.30.401	32 mm	М	0 mm
2.30.402	32 mm	L	+4 mm
2.30.403	32 mm	XL	+8mm
2.30.404	32 mm	XXL	+ 12 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm

Hüftkopf, CoCrMo

Art. Nr.	AD	Halsläng	e
52.34.0125	22,2 mm	S	- 3 mm
52.34.0126	22,2 mm	М	0 mm
52.34.0127	22,2 mm	L	+3 mm
2.30.010	28 mm	S	-4mm
2.30.011	28 mm	М	0 mm
2.30.012	28 mm	L	+4mm
2.30.013	28 mm	XL	+8mm
2.30.014	28 mm	XXL	+ 12 mm
2.30.020	32 mm	S	-4mm
2.30.021	32 mm	М	0 mm
2.30.022	32 mm	L	+4mm
2.30.023	32 mm	XL	+8mm
2.30.024	32 mm	XXL	+ 12 mm
52.34.0686	36 mm	S	-4mm
52.34.0687	36 mm	М	0 mm
52.34.0688	36 mm	L	+4mm
52.34.0689	36 mm	XL	+8mm
52.34.0690	36 mm	XXL	+ 12 mm

Material: CoCrMo Konus: 12/14mm

Hüftköpfe

Hüftkopf, ceramys

Art. Nr.	AD	Halslän	ge
54.47.0010	28 mm	S	-3,5 mm
54.47.0011	28 mm	М	0 mm
54.47.0012	28 mm	L	+3,5 mm
54.47.0110	32 mm	S	- 4 mm
54.47.0111	32 mm	M	0 mm
54.47.0112	32 mm	L	+4 mm
54.47.0113	32 mm	XL	+8 mm
54.47.0210	36 mm	S	-4 mm
54.47.0211	36 mm	М	0 mm
54.47.0212	36 mm	L	+4 mm
54.47.0213	36 mm	XL	+8mm

Material: ZrO₂-Al₂O₃ Konus: 12/14 mm

Verwenden Sie für Keramik-Keramik-Paarungen nur Keramikköpfe mit Keramikinlays von Mathys.

Hüftkopf, symarec

Art. Nr.	AD	Halslän	ge
54.48.0010	28 mm	S	- 3,5 mm
54.48.0011	28 mm	М	0 mm
54.48.0012	28 mm	L	+3,5 mm
54.48.0110	32 mm	S	-4mm
54.48.0111	32 mm	M	0 mm
54.48.0112	32 mm	L	+4mm
54.48.0113	32 mm	XL	+8mm
54.48.0210	36 mm	S	-4mm
54.48.0211	36 mm	М	0 mm
54.48.0212	36 mm	L	+4mm
54.48.0213	36 mm	XL	+8mm

Material: Al₂O₃-ZrO₂ Konus: 12/14 mm

Verwenden Sie für Keramik-Keramik-Paarungen nur Keramikköpfe mit Keramikinlays von Mathys.

Revisionsköpfe

ceramys-Revisionskopf

Art. Nr.	AD	Halsläng	је
54.47.2010	28 mm	S	-3,5 mm
54.47.2020	28 mm	М	0 mm
54.47.2030	28 mm	L	+ 3,5 mm
54.47.2040	28 mm	XL	+ 7 mm
54.47.2110	32 mm	S	-3,5 mm
54.47.2120	32 mm	М	0 mm
54.47.2130	32 mm	L	+ 3,5 mm
54.47.2140	32 mm	XL	+7 mm
54.47.2210	36 mm	S	-3,5 mm
54.47.2220	36 mm	М	0 mm
54.47.2230	36 mm	L	+3,5 mm
54.47.2240	36 mm	XL	+7 mm

Material: ZrO₂-Al₂O₃, TiAl6V4 **Konus:** 12/14 mm

ceramys-Revisionsköpfe können mit allen Mathys-Schaftsystemen mit einem «12/14-Konus» verwendet werden.

Die ceramys-Revisionsköpfe können nur mit Mathys Pfannen oder Inlays aus Polyethylen oder Keramik kombiniert werden.

CoCrMo	Stahl	AD	Kopfdurchmesser
52.34.0090	-	39 mm	22,2 mm
52.34.0091	-	40 mm	22,2 mm
52.34.0092	-	41 mm	22,2 mm
52.34.0093	-	42 mm	22,2 mm
52.34.0094	-	43 mm	22,2 mm
52.34.0100	54.11.0042	42 mm	28 mm
52.34.0101	-	43 mm	28 mm
52.34.0102	54.11.0044	44 mm	28 mm
52.34.0103	-	45 mm	28 mm
52.34.0104	54.11.0046	46 mm	28 mm
52.34.0105	-	47 mm	28 mm
52.34.0106	54.11.0048	48 mm	28 mm
52.34.0107	-	49 mm	28 mm
52.34.0108	54.11.0050	50 mm	28 mm
52.34.0109	_	51 mm	28 mm
52.34.0110	54.11.0052	52 mm	28 mm
52.34.0111	_	53 mm	28 mm
52.34.0112	54.11.0054	54 mm	28 mm
52.34.0113	_	55 mm	28 mm
52.34.0114	54.11.0056	56 mm	28 mm
52.34.0115	-	57 mm	28 mm
52.34.0116	54.11.0058	58 mm	28 mm
52.34.0117	_	59 mm	28 mm

Material CoCrMo: CoCrMo; UHMWPE Material Stahl: FeCrNiMnMoNbN; UHMWPE

Detaillierte Informationen zur Implantation von Bipolarköpfen finden Sie in einer separaten Operationstechnik. Wenden Sie sich dazu bitte an Ihre lokale Mathys-Vertretung.

Hemiprothesenkopf, Stahl Grössen 38–44 mm

Art. Nr. / S -4 mr	m Art. Nr. / M 0 mm	AD
2.30.420	67092	38 mm
2.30.421	67093	40 mm
2.30.422	67094	42 mm
2.30.423	67095	44 mm

Material: FeCrNiMnMoNbN

Konus: 12/14 mm

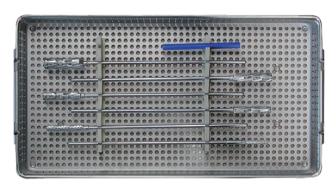
Hemiprothesenkopf, Stahl Grössen 46–58 mm

Art. Nr. / S -4mm	Art. Nr. / M 0 mm	AD
2.30.424	67096	46 mm
2.30.425	67097	48 mm
2.30.426	67098	50 mm
2.30.427	67099	52 mm
2.30.428	67100	54 mm
2.30.429	67101	56 mm
2.30.430	67102	58 mm

Material: FeCrNiMnMoNbN Konus: 12/14mm

5. Instrumente

Centris-Instrumentarium


Art. Nr. 56.03.6101 Centris Sieb 1

Art. Nr. 56.03.6102 Centris Sieb 2

Art. Nr. 56.03.6103 Centris Sieb 3

Art. Nr. 56.03.6104 Centris Sieb 4

Centris-Instrumentarium

Art. Nr. 56.03.6105 Centris Sieb 5

Art. Nr. 56.03.6106 Centris Sieb 6

Art. Nr. 56.03.6107 **Centris Sieb 7**

Art. Nr. 56.03.6108 Centris Sieb 8

Centris-Instrumentarium

Art. Nr. 51.34.0074 Centris Sieb 9

Centris-Instrumentarium OPT modular Raspeln 56.01.0011A

Sieb-Nr.	Art. Nr.	
1	56.03.6101	
2	56.03.6102	
3	56.03.6103	

Centris-Instrumentarium OPT Spongiosa-Fräser 56.01.0012A

Sieb-Nr.	Art. Nr.
1	56.03.6101
4	56.03.6104
5	56.03.6105
6	56.03.6106

Centris-Instrumentarium Zusatz LS 56.01.0013A*

Sieb-Nr.	Art. Nr.
7	56.03.6107
8	56.03.6108
9	51.34.0074

Centris-Instrumentarium Zusatz Testprothese 56.01.0014A*

Sieb-Nr.	Art. Nr.
5	56.03.6105
6	56.03.6106

Bemerkung: Die genannten Artikelnummern beziehen sich auf die leeren Siebe. Die Bilder sind als Unterstützung gedacht und veranschaulichen die verschiedenen Zusammenstellungsmöglichkeiten.

^{*} Optional – erforderlich für Langschäfte

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6160	Centris Testprothese 1S2	5
56.02.6161	Centris Testprothese 2S1	5
56.02.6162	Centris Testprothese 2S2	5
56.02.6163	Centris Testprothese 2S3	5
56.02.6164	Centris Testprothese 3S1	5
56.02.6165	Centris Testprothese 3S2	5
56.02.6166	Centris Testprothese 3S3	5
56.02.6167	Centris Testprothese 4S1	5
56.02.6168	Centris Testprothese 4S2	5
56.02.6169	Centris Testprothese 4S3	5
56.02.6170	Centris Testprothese 5R1	5
56.02.6171	Centris Testprothese 5R2	5

Set Nr. 56.01.0012A, 56.01.0014A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6155	Centris Testprothese 1D1	6
56.02.6156	Centris Testprothese 2D1	6
56.02.6157	Centris Testprothese 3D1	6
56.02.6158	Centris Testprothese 4D1	6
56.02.6159	Centris Testprothese 5D1	6

Set Nr. 56.01.0012A, 56.01.0014A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6004	Centris Testkopf f/ Raspel 22 S	1
56.02.6005	Centris Testkopf f/ Raspel 22 M	1
56.02.6006	Centris Testkopf f/ Raspel 22 L	1

Konus 11/12 mm; Set Nr. 56.01.0011A

Art. Nr.	Beschreibung	Sieb-Nr.
51.34.1061	Testkopf 22 S	1
51.34.1062	Testkopf 22 M	1
51.34.1063	Testkopf 22 L	1

Konus 12/14mm; Set Nr. 56.01.0011A, 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6014	Centris Testkopf f/ Raspel 28 S	1
56.02.6015	Centris Testkopf f/ Raspel 28 M	1
56.02.6016	Centris Testkopf f/ Raspel 28 L	1

Konus 11/12mm; Set Nr. 56.01.0011A

Art. Nr.	Beschreibung	Sieb-Nr.
51.34.1064	Testkopf 28 S	1
51.34.1065	Testkopf 28 M	1
51.34.1066	Testkopf 28 L	1

Konus 12/14mm; Set Nr. 56.01.0011A, 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
51.34.0135	Reponierhebel Silikon	1

Set Nr. 56.01.0011A, 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
3.30.536	Aufsatz zu Reponierhebel	1

Set Nr. 56.01.0011A, 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6035	Einschläger	1
Set Nr. 56.01.001	1A, 56.01.0012A	

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6001	Centris Schlaggriff	1

Set Nr. 56.01.0011A, 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.2016	Reibahle schmal	1

Set Nr. 56.01.0011A, 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6110	Centris Spongiosafräser 8	4
56.02.6111	Centris Spongiosafräser 10	4
56.02.6112	Centris Spongiosafräser 12	4
56.02.6113	Centris Spongiosafräser 14	4
56.02.6114	Centris Spongiosafräser 16	4
56.02.6115	Centris Spongiosafräser 18	4

Set Nr. 56.01.0012A

Set Nr. 56.01.0012A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6180	Centris Testprothese 5R1/175	7
56.02.6172	Centris Testprothese 3S1/180	7
56.02.6174	Centris Testprothese 3S2/180	7
56.02.6176	Centris Testprothese 4S1/180	7
56.02.6178	Centris Testprothese 4S2/180	7
56.02.6181	Centris Testprothese 5R1/225	8
56.02.6173	Centris Testprothese 3S1/230	8
56.02.6175	Centris Testprothese 3S2/230	8
56.02.6177	Centris Testprothese 4S1/230	8
56.02.6179	Centris Testprothese 4S2/230	8

Set Nr. 56.01.0013A

Art. Nr.	Beschreibung	Sieb-Nr.
51.34.0063	Reibahle flexibel 8.0, Gen. 2	9
51.34.0064	Reibahle flexibel 8.5, Gen. 2	9
51.34.0065	Reibahle flexibel 9.0, Gen. 2	9
51.34.0066	Reibahle flexibel 9.5, Gen. 2	9
51.34.0067	Reibahle flexibel 10.0, Gen. 2	9
51.34.0068	Reibahle flexibel 10.5, Gen. 2	9
51.34.0069	Reibahle flexibel 11.0, Gen. 2	9
51.34.0070	Reibahle flexibel 11.5, Gen. 2	9
51.34.0071	Reibahle flexibel 12.0, Gen. 2	9
51.34.0072	Reibahle flexibel 12.5, Gen. 2	9
51.34.0073	Reibahle flexibel 13.0, Gen. 2	9

Set Nr. 56.01.0013A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6183	Führung zu Markraumbohrer flex.	9

Set Nr. 56.01.0013A

Art. Nr.	Beschreibung	Sieb-Nr.
58.02.4008	Handgriff mit Schnellkupplung	9

Set Nr. 56.01.0013A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6130	Raspel modular Centris 1S2	2
56.02.6131	Raspel modular Centris 2S1	2
56.02.6132	Raspel modular Centris 2S2	2
56.02.6133	Raspel modular Centris 2S3	2
56.02.6134	Raspel modular Centris 3S1	2
56.02.6135	Raspel modular Centris 3S2	2
56.02.6136	Raspel modular Centris 3S3	2
56.02.6137	Raspel modular Centris 4S1	2
56.02.6138	Raspel modular Centris 4S2	2
56.02.6139	Raspel modular Centris 4S3	2
56.02.6140	Raspel modular Centris 5R1	2
56.02.6141	Raspel modular Centris 5R2	2

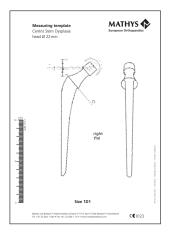
Set Nr. 56.01.0011A

Art. Nr.	Beschreibung	Sieb-Nr.
56.02.6125	Raspel modular Centris 1D1	3
56.02.6126	Raspel modular Centris 2D1	3
56.02.6127	Raspel modular Centris 3D1	3
56.02.6128	Raspel modular Centris 4D1	3
56.02.6129	Raspel modular Centris 5D1	3

Set Nr. 56.01.0011A

Art. Nr.	Beschreibung
56.02.6200	Centris Kalkarfräser

Set Nr. 56.01.0011A, 56.01.0012A



Centris Instrumente – optional

Art. Nr.	Beschreibung
51.34.0295	Schafteinschläger MIS mit Kugel

6. Röntgenschablonen

Art. Nr.	Beschreibung
330.010.007	Centris stem dysplasia template
330.010.008	Centris dysplasia 28 mm template
330.010.010	Centris standard 28 mm template
330.010.011	Centris long stem 28 mm template

7. Literatur

- Scheerlinck et al (2006) The design features of cemented femoral hip implant; J Bone Joint Surg [Br] 2006;88-B:1409-18
- Scheerlinck Th. (2010) Primary hip arthroplasty templating on standard radiographs. A stepwise approach; Acta Orthop. Belg., 2010, 76, 432-442
- Loweg L., Kutzner K.P., Trost M., Hechtner M., et al. The learning curve in short-stem THA: influence of the surgeon's experience on intraoperative adjustments due to intraoperative radiography. European Journal of Orthopaedic Surgery & Traumatology, 2017

8. Symbole

Hersteller

Korrekt

Nicht korrekt

Achtung

Notizen

Australia Mathys Orthopaedics Pty Ltd Lane Cove West, NSW 2066 Tel: +61 2 9417 9200 info.au@mathysmedical.com

Austria

Mathys Orthopädie GmbH

2351 Wiener Neudorf Tel: +43 2236 860 999 info.at@mathysmedical.com

Belgium Mathys Orthopaedics Belux N.V.-S.A.

3001 Leuven Tel: +32 16 38 81 20 info.be@mathysmedical.com

France Mathys Orthopédie S.A.S

63360 Gerzat Tel: +33 4 73 23 95 95 info.fr@mathysmedical.com

Germany Mathys Orthopädie GmbH

«Centre of Excellence Sales» Bochum

44809 Bochum Tel: +49 234 588 59 0 sales.de@mathysmedical.com

«Centre of Excellence Ceramics» Mörsdorf

07646 Mörsdorf/Thür. Tel: +49 364 284 94 0 info.de@mathysmedical.com

«Centre of Excellence Production» Hermsdorf

07629 Hermsdorf Tel: +49 364 284 94 110 info.de@mathysmedical.com Italy Mathys Ortopedia S.r.l.

20141 Milan

Tel: +39 02 5354 2305 info.it@mathysmedical.com

Japan Mathys KK

Tokyo 108-0075 Tel: +81 3 3474 6900 info.jp@mathysmedical.com

New Zealand Mathys Ltd.

Auckland

Tel: +64 9 478 39 00 info.nz@mathysmedical.com

Netherlands Mathys Orthopaedics B.V.

3001 Leuven Tel: +31 88 1300 500 info.nl@mathysmedical.com

P. R. China Mathys (Shanghai) Medical Device Trading Co., Ltd

Shanghai, 200041 Tel: +86 21 6170 2655 info.cn@mathysmedical.com

Switzerland Mathys (Schweiz) GmbH

2544 Bettlach

Tel: +41 32 644 1 458 info@mathysmedical.com

United Kingdom Mathys Orthopaedics Ltd

Alton, Hampshire GU34 2QL Tel: +44 8450 580 938 info.uk@mathysmedical.com

Local Marketing Partners in over 30 countries worldwide...

