

Operationstechnik

balanSys BICONDYLAR

Kombination leggera Instrumente

Preservation in motion

Nur für medizinisches Fachpersonal. Die Abbildung soll keinen Zusammenhang zwischen der Verwendung des beschriebenen Medizinproduktes und seiner Leistung herstellen.

Gegründet auf Tradition

Dem technischen Fortschritt verpflichtet

Schritt um Schritt mit unseren klinischen Partnern
Für den Erhalt der Beweglichkeit

Preservation in motion

Als Schweizer Unternehmen bekennt sich Mathys zu diesem Leitsatz und verfolgt ein Produktportfolio mit dem Ziel, traditionelle Philosophien in Bezug auf Materialien oder Design weiterzuentwickeln, um bestehende klinische Herausforderungen zu bewältigen. Dies spiegelt sich in unserer Bildsprache wider: Traditionelle Schweizer Aktivitäten in Verbindung mit sich ständig weiterentwickelnder Sportausrüstung.

Inhaltsverzeichnis

Einführung		4
1.	Indikationen und Kontraindikationen	5
2. 2.1 2.2	Optionen Implantatoptionen Instrumentenoptionen	6 6 6
3.	Ziel des Eingriffs und chirurgischer Ansatz	7
4.	Vorbereitung des Patienten	7
5.	Präoperative Planung	8
6. 6.1 6.2 6.3 6.4 6.5 6.6	Operationstechnik Übersicht über die Operationstechnik Tibiaresektion Femurresektion Femorale Vorbereitung und Probereposition Implantation der endgültigen Implantate Rotationsplattform – Femur und Inlay	10 10 13 20 36 45 50
7. 7.1 7.2 7.3 7.4 7.5	Anhang PS – Vorbereitung und Implantation Intramedulläre Tibiaausrichtung Optionaler 2°-Nachschnitt Vorbereitung der 3-Stift-Patella Pins und Schrauben	52 52 64 71 73 77
8. 8.1 8.2 8.3	Implantate Kombinationsdiagramme Artikelnummern der balanSys Implantate Sterile Doppel- und Dreifachbeutelverpackung	78 78 79 91
9. 9.1	Instrumente Röntgenschablonen	92 115
10.	Symbole und Abkürzungen	116

Bemerkung

Machen Sie sich vor der Verwendung eines von Mathys AG Bettlach hergestellten Implantates mit der Handhabung der Instrumente, der produktspezifischen Operationstechnik und den im Beipackzettel aufgeführten Warnhinweisen, Sicherheitshinweisen und Empfehlungen vertraut. Nutzen Sie die von Mathys angebotenen Anwenderschulungen und verfahren Sie nach der empfohlenen Operationstechnik.

Einführung

Die Zielsetzung der Knievollarthroplastie besteht in der Wiederherstellung der normalen Achse der unteren Extremitäten, der Restauration der normalen Kniefunktion und der Schmerzlinderung.

Mathys balanSys BICONDYLAR-Implantate und -Instrumente sind so gestaltet, dass sie die Anforderungen der Chirurgen an Prothesen in Bezug auf Kinematik, Ligament Balancing, Stabilität und lange Überlebensrate erfüllen. ¹ Seit 1997 hat sich das balanSys BICONDYLAR-System klinisch bewährt. ²

Mit dem in der Schweiz hergestellten Kniesystem balanSys bietet Mathys AG Bettlach eine breite Auswahl von Komponenten, die den anatomischen Gegebenheiten des Patienten und den funktionalen Anforderungen des Kniegelenks entsprechen. Es besteht aus einer zementierten oder unzementierten Femurkomponente, einem zementierten symmetrischen Tibiaplateau und einem Tibiainlay. Eine zementierte Patellakomponente ist optional. Für Femur- und Tibiakomponenten aus Metall ist eine TiNbN-beschichtete Option verfügbar.

- Superior long-term survival for fixed bearing compared with mobile bearing in ligament-balanced total knee arthroplasty. Heesterbeek, P.J.C., van Houten, A.H., Klenk, J.S. et al. Knee Surg Sports Traumatol Arthrosc, online 07 April 2017
- ² Data on file at Mathys Ltd Bettlach.

1. Indikationen und Kontraindikationen

Indikationen

- Schmerzhafte und/oder behindernde Gelenkerkrankung des Knies aufgrund von Arthrose, avaskulärer Nekrose, primärer oder posttraumatischer Arthritis
- Revision eines vorherigen Knieersatzes

Kontraindikationen

- Lokale oder allgemeine Infektionen
- Jegliche Weichgewebe-, Band-, Nerven- oder Gefässinsuffizienz, die zu einem unannehmbaren Risiko für Protheseninstabilität, Prothesenfixierungsversagen und/oder Komplikationen in der postoperativen Versorgung führen könnte
- Beeinträchtigtes Knochenlager aufgrund von Knochenverlust oder Knochenderenderender und/oder unzureichende Knochensubstanz, die keine ausreichende Stützung und/oder Fixierung für die Prothese bieten kann
- Überempfindlichkeit gegenüber verwendeten Materialien
- Mangelnde Reife des Skeletts
- Genu recurvatum
- Insuffizienz des Streckmechanismus
- Progressive neoplastische Erkrankung

Für weitergehende Informationen lesen Sie bitte die Gebrauchsanweisung oder fragen Ihren Mathys-Vertreter.

2. Optionen

2.1 Implantatoptionen

Auf der Grundlage der Präferenz des Chirurgen und der Anforderungen des Patienten hat der Chirurg die Wahl zwischen einer Reihe von balanSys BICONDYLAR-Implantatoptionen für Kniegelenksersatz mit beweglichem Lager und Festlager, mit oder ohne Erhalt des hinteren Kreuzbandes (HKB).

Mobile Bearing: Rotating Platform, (RP)

Fixed Bearing: Kreuzbanderhaltend (Cruciate Retaining, CR), Ultrakongruent (Ultra Congruent, UC) und Posterior stabilisiert (Posterior Stabilized, PS).

Die CR-Femurkomponenten sind mit einem CR-Inlay zu verwenden, wenn das HKB intakt ist, oder entweder mit RP- oder mit UC-Inlays, wenn das HKB geopfert wird oder beschädigt ist und entfernt wird. Darüber hinaus sind die PS-Femurkomponenten mit den PS-Inlays zu verwenden, wenn das HKB geopfert wird oder beschädigt ist und entfernt wird. Tibia-Einsätze sind in Standard-UHMWPE oder in vitamys, dem Vitamin-E-stabilisierten PE, erhältlich.

Die intuitiven leggera Instrumente werden für reproduzierbare exakte Ergebnisse hergestellt.

Vorbereitung des Femurs erfolgt nach der Tibiaresektion unter Anwendung der Spacerblock- oder Weichteilbalancierungstechnik. Die Rotation der Femurkomponente wird mithilfe der posterioren Kondylen, der Whiteside-Linie oder der Epikondylen bestimmt. Mit dem Ziel, den Streck- und Beugespalt auszugleichen, wird die A-P-Position der Femurkomponente von den posterioren Kondylen aus (posterior referenziert) gemessen.

Bezüglich Grössenbestimmung und Kompatibilität sehen Sie bitte das Diagramm in Kapitel 8.1 (Seite 78).

2.2 Instrumentenoptionen

Mit den balanSys leggera Instrumenten können alle balanSys BICONDYLAR-Implantate implantiert werden. Der Chirurg kann zwischen extramedullärer und intramedullärer Ausrichtung der Tibia wählen und hat verschiedene Optionen zur Positionierung des Femurs. Neben dieser weichgewebeausgleichenden Kombinationstechnik bietet Mathys auch die knochenorientierte Technik für balanSys BICONDYLAR-Implantate an.

Die leggera Instrumente sind mit 1,27 mm (0,05 Zoll)-Sägeblättern kompatibel. Bezüglich durch Mathys vertriebener Sägeblätter sehen Sie bitte in der Broschüre 336.030.032 «Sterile Sawblades».

3. Ziel des Eingriffs und chirurgischer Ansatz

- Intraoperative Korrektur von axialen Abweichungen in der Frontalebene des Beins entlang der mechanischen Achse, wo die Gelenklinie rechtwinklig zu dieser Achse verlaufen sollte
- Rekonstruktion der physiologischen Achsenverhältnisse
- Prothesenbezogene Kinematik:
 - Physiologische Gelenklinie
 - Ausreichende mediale und laterale Stabilität in Streckung und Beugung
 - Korrekt zentriertes und ausbalanciertes patellofemorales Gelenk
 - Bewegungsfreiheit: Von maximaler Streckung zu maximal möglicher Beugung

Die Wahl des Verfahrens hängt von der axialen Fehlstellung (Varus/Valgus) ab.

4. Vorbereitung des Patienten

Die Operation wird an Patienten in Vollnarkose oder Spinalanästhesie durchgeführt, wobei eine ausreichende Muskelentspannung erforderlich ist.

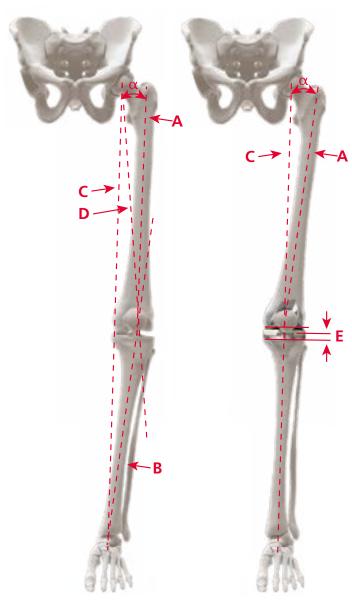
Die postoperativen Schmerzen sind ohne Verwendung einer Aderpresse reduziert. Wenn eine Aderpresse angelegt werden muss, sollte sie am proximalen Oberschenkel angelegt und mit dem Knie in Hyperflexion aufgeblasen werden. Dadurch wird der grösstmögliche Anteil des Quadrizeps unter dem Niveau der Aderpresse gehalten.

Den Patienten in Rückenlage lagern.

Beugen Sie das Knie in eine 90°-Position.

Verwenden Sie eine Stützrolle auf dem Tisch und eine seitliche Stütze, um die Streckung und Beugung des Beins zu erleichtern.

5. Präoperative Planung


Die präoperative Planung umfasst die Indikation, Evaluation und Vorbereitung, die wichtig für den Erfolg der Operation sind.

Präoperative Röntgenaufnahmen sind unerlässlich für die Planung der Operation. Röntgenaufnahmen des Knies in zwei Ansichten sind empfehlenswert: Eine Röntgenaufnahme der einbeinigen Haltung in der anterior-posterioren (A-P) Ebene und eine laterale Röntgenaufnahme des Kniegelenks in 90° Beugung oder in Streckung. Darüber hinaus wird eine Röntgenaufnahme des gesamten Beins bei Belastung beider Beine benötigt. Eine Tangentialansicht («Skyline» oder «Sunrise») der Patella in 40° Beugung ist ebenfalls hilfreich.

Röntgenaufnahmen werden benötigt, um Deformationen und Knochendefekte sowie Osteophyten zu identifizieren und zu quantifizieren. Mithilfe von Planungsschablonen kann die Grösse der femoralen und tibialen Prothese zunächst bestimmt werden. Ganzbein-Röntgenaufnahmen helfen, Abweichungen der Achse und Deformationen im diaphysären Bereich des Femurs und der Tibia zu erkennen. Ganzbein-Röntgenaufnahmen helfen ausserdem bei der Bestimmung, ob eine intramedulläre Ausrichtung durchgeführt werden kann. Darüber hinaus können die mechanischen und anatomischen Achsen des Beins dargestellt werden, und der femorale Winkel kann bestimmt werden (siehe Grafik auf Seite 9). Dieser Winkel variiert je nach Morphologie. Der femorale Winkel muss für die Definition des femoralen distalen Schnitts bekannt sein. Dies wird durch die leggera-Winkellehre auf die Knochenresektion übertragen.

Der Eintrittspunkt für die tibiale und femorale extra- oder intramedulläre Ausrichtungslehre wird durch Verlängerung der Linie der anatomischen Achsen der Tibia und des Femurs bestimmt. In der Regel befindet sich der Eintrittspunkt etwas medial zur Eminentia intercondylaris bzw. zur Spitze der Fossa intercondylaris.

Auf der Ganzbein-Röntgenaufnahme kann das Ausmass der Tibiaresektion ebenfalls bestimmt werden. Auf diese Weise kann die erforderliche Grössenordnung der medialen und lateralen Knochenresektion beurteilt werden. Dies ist bei umfangreicheren Knochendefekten besonders wichtig, um übermässige Resektion zu vermeiden.

Überprüfung der A-P-Ganzbein-Röntgenaufnahme auf folgende Weise:

- Einzeichnen der anatomischen Achse des Femurs
 (A) auf der Röntgenaufnahme. Falls das
 Femur übermässig gebogen ist, sollte eine die
 intramedulläre Ausrichtung darstellende
 Linie anstatt der Linie A gezeichnet werden.
- 2. Zeichnen einer Linie von der Mitte des Femurkopfs zur Mitte des Knies: Mechanische Achse **D**.
- 3. Der Winkel zwischen der anatomischen Achse und der mechanischen Achse (Femur-Valgus-Winkel α) ist für jeden Patienten spezifisch und bestimmt die auf der Winkellehre einzustellende Gradzahl (siehe Abbildung 25).
- 4. Einzeichnen der Achse der Tibia (**B**) und Bestimmen der Tibiaresektionsebene (**E**) senkrecht zu **B**. Darauf achten, bei Tibiadefekten zu umfangreiche Resektion zu vermeiden.
- 5. Präoperative Bestimmung der Komponentengrösse und Resektionstiefe mithilfe der Röntgenschablonen in der A-P Ebene und der lateralen Ebene.
- 6. Nach der Resektion sollte die mechanische Achse des Beins (**C**) mit den Linien **D** und **B** zusammenfallen.
- A Anatomische Achse des Femurs
- B Achse der Tibia
- C Mechanische Achse des Beins
- D Mechanische Achse des Femurs
- E Resektionstiefe der Tibia (mm)
- α Femur-Valgus-Winkel

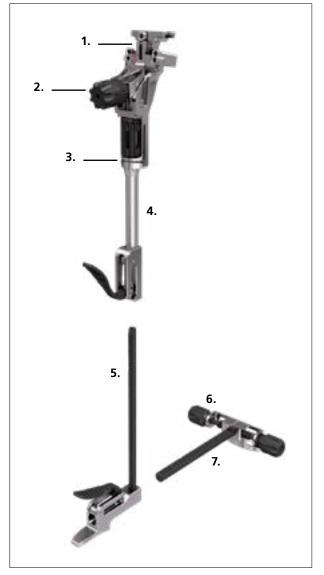
6. Operationstechnik

6.1 Übersicht über die Operationstechnik

1. Tibiaresektion

2. Femurresektion

3. Vorbereitung und Implantation von balanSys CR, UC und RP


4. Vorbereitung und Implantation von balanSys PS

Vor jedem Eingriff sollten die Instrumente auf Beschädigung oder Deformation überprüft werden. Verwenden Sie nur unbeschädigte Instrumente. Verwenden Sie keine Testkomponenten mit Bearbeitungsspuren oder Kratzern.

6. Operationstechnik

6.2 Tibiaresektion

6.2.1 Montage des extramedullären Referenzsystems für die Tibiaausrichtung (TRS)

Übersicht über das extramedulläre Referenzsystem für die Tibiaausrichtung (TRS)

- 1. Skala für Resektionsebene
- 2. Einstellung der Tibia-Neigung
- 3. Einstellung der Resektionsebene
- 4. TRS Proximal
- 5. TRS Distal
- 6. Einstellung der Tibiaachse
- 7. TRS Fussgelenkhalter

Abb. 1

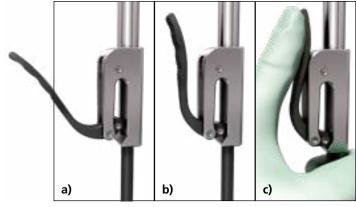


Abb. 2

Der Verriegelungsmechanismus hat drei Positionen:

- a) Offen: Zum Zusammenbauen/Zerlegen von Instrumenten
- b) Fest: Stabil/Arbeitsposition
- c) Gleitend: Für nicht-inkrementelle Positionierung

Abb. 3 Befestigen des TRS Distal

Abb. 4 Befestigen des TRS Fussgelenkhalters

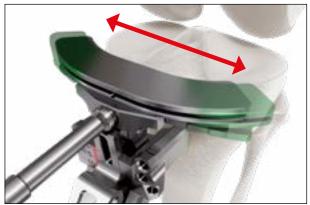


Abb. 5

Montieren Sie die TRS-Schnittlehre mit dem balanSys-Schraubenzieher an das TRS Proximal. Die TRS-Schnittlehre kann je nach Seite der Operation und dem Verfahren nach links und nach rechts verschoben werden.

Optional

Der Eminentia-Bügel kann montiert werden, um das TRS auf der Eminentia intercondylaris zu fixieren. Zur Montage sehen Sie Anhang 7.2 – Intramedulläre Ausrichtung.

Bemerkung

Um eine gute Übersicht zu erhalten, sollte zuerst das VKB und - im Falle der Mangelhaftigkeit oder aufgrund der Planung – das HKB vollständig entfernt werden. Darüber hinaus müssen alle Osteophyten in der Fossa entfernt werden.

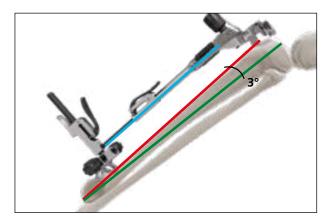


Abb. 7

Abb. 8

6.2.2 Tibiaresektion

Die Achse des TRS wird parallel zum anterioren Tibiakortex ausgerichtet. Dies kann angeglichen werden, indem mit zwei Fingern zwischen das Tibia-Referenzsystem und die anteriore Fläche der Tibia gefahren wird.

Bemerkung

Das TRS berücksichtigt den Winkel von 3° zwischen dem Markraum (grüne Linie) und der anterioren Tibiakortex (rote Linie) auf. Da das TRS parallel zur anterioren Kortex (blaue Linie) verläuft, ist der Grad der posterioren Neigung der Resektion wie auf der Skala angegeben.

Richten Sie das TRS distal am zweiten Zehen aus und befestigen es mit dem TRS-Gummiband. Die Mitte des proximalen TRS muss über der Verbindung zwischen dem medialen und dem mittleren Drittel der Tuberositas tibiae positioniert werden, und das distale TRS wird in dem medialen Drittel des Fussgelenks ausgerichtet, um die Tibiarotation wiederzugeben.

Die Skala der Resektionsebene muss auf den Wert 0 mm eingestellt sein.

Stellen Sie mithilfe des Gleitmechanismus 2 die Längen des TRS ein, so dass sich der Sägeschlitz ungefähr auf der Höhe des Tibiaplateaus befindet.

Stabilisieren Sie das TRS mit einem zentralen 3,2 mm

Bohren Sie mit dem 3,2 mm Bohrer vor und setzen einen Pin durch den vertikalen Schlitz des TRS Proximal ein. um die Stabilität zu erhöhen.

Die vertikale Position des Pins sollte sich in der Mitte des Schlitzes befinden.

Optional kann der intramedulläre Bügel verwendet werden, um zusätzliche Stabilität zu geben. Sehen Sie in Anhang 7.2 – Intramedulläre Ausrichtung nach.

Abb. 10 Varus-/Valgus-Einstellung

Verwenden Sie den Varus-/Valgus-Einstellungsmechanismus zur Ausrichtung des TRS parallel zu der Tibiaachse. Das distale TRS muss in dem medialen Drittel des Fussgelenks (medialer und lateraler Malleolus) ausgerichtet werden.

Die lange Markierung stellt die neutrale Position dar.

Abb. 11 Posteriore Neigung

Verwenden Sie das Stellrad zur Einstellung der Neigung 3, um die posteriore Neigung entsprechend der Anatomie einzustellen. Das Tastblech muss sich parallel zu der am besten erhaltenen Tibiagelenkoberfläche befinden.

Bemerkung

Die Autoren empfehlen eine posteriore Neigung von bis zu 7° für ein HKB-erhaltendes Implantat und von bis zu 5° für ein HKB-ersetzendes Implantat.

Abb. 12

Bestimmen Sie die ursprüngliche Gelenklinie auf dem Niveau der am besten erhaltenen Tibiagelenk-oberfläche. Verwenden Sie zu diesem Zweck das Tastblech als Referenz, oder setzen Sie den Tibia-Höhentaster in den Sägeschlitz der TRS Schnittlehre ein. Die Spitze des Tibia-Höhentasters muss die am besten erhaltene Tibiagelenk-oberfläche berühren.

Verwenden Sie den Gleitmechanismus **2**, um die Schnittlehre distal oder proximal zu bewegen.

Fixieren Sie das TRS proximal mit mindestens zwei geraden Pins und einem schrägen Pin. Bohren Sie die Löcher mit dem 3,2 mm Bohrer vor.

Abb. 13

Abb. 14

Abb. 15

Es gibt zwei Optionen zum Fixieren des TRS.

- 1. Proximale Löcher (gefast)
- 2. Distale Löcher

Grundsätzlich sollten die proximalen Löcher zum Fixieren verwendet werden, weil sich der Tibiaknochen proximal verbreitert. Die Schnittlehre kann anschliessend um bis zu 10 mm distal verschoben werden.

Für eine geplante Resektion von mehr als 10 mm sollten die distalen Löcher verwendet werden. Nach dem Einsetzen der Pins kann das TRS mit Schnittlehre anschliessend zu den proximalen Löchern neu positioniert werden. Dieses Vorgehen ermöglicht eine Resektion von 10–15 mm. Bitte beachten, dass zu der ablesbaren Skala 5 mm hinzugerechnet werden müssen.

Bohrer und Pins dürfen nur durch den anterioren kortikalen Knochen dringen und dürfen den posterioren kortikalen Knochen nicht perforieren, um Verletzungen an dorsalen Gefässen und Nerven zu vermeiden. Es ist empfehlenswert, bis hinter die anteriore Kortikalis zu bohren und den Pin mit einem Hammer einzuschlagen, bis er die posteriore Kortikalis berührt.

Falls das HKB erhalten bleibt, muss die Stabilität berücksichtigt werden. Insbesondere im Falle umfangreicherer Resektionen.

Stellen Sie die Resektionshöhe durch Bewegen der TRS-Schnittlehre 6–8 mm durch Drehen am axialen Rad 1 in distaler Richtung ein. Die Mindestresektionshöhe hängt von der Qualität des Knorpels in dem Bereich ab, in dem die Gelenklinie bestimmt wurde (Abb. 14).

Überprüfen Sie vor der Resektion das eingestellte Resektionsniveau mit dem Tastblech.

Abb. 16

Resezieren Sie die Tibia mit einem 1,27 mm Sägeblatt durch den Sägeschlitz.

Bemerkung

Platzieren Sie Retraktoren zum Schutz der Bänder während der Tibiaresektion.

Bemerkung

Zum Reduzieren der Hitze und der Gefahr der Osteonekrose ist es empfehlenswert, die Sägeblätter während des Sägens zu kühlen.

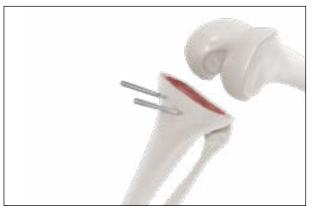


Abb. 17

Entfernen Sie die Instrumente. Für die Option einer späteren zusätzlichen Resektion sollte mindestens ein gerader Pin im Knochen verbleiben.

Abb. 18

Abb. 19

Abb. 20

Bestimmen Sie die Grösse der Tibiaprothese mit der Tibiagrössenlehre. Berücksichtigen Sie die Rotationsausrichtung, um die Beugungsebene des Knies wiederherzustellen.

Die Rotation der Tibiagrössenlehre wird normalerweise auf der Verbindung zwischen dem medialen und mittleren Drittel der Tuberositas tibiae zentriert. Stellen Sie maximale Abdeckung der Resektionsfläche ohne Überhang der Tibiagrössenlehre bereit.

Bemerkung

Falls ein Implantat mit Rotationsplattform (RP-Implantat) geplant ist, muss die Rotationsausrichtung des Tibiaimplantats berücksichtigt werden. Die Rotationsplattform ermöglicht eine Variabilität bei der Rotation von nicht mehr als ungefähr 5° Abweichung.

Verwenden Sie den Peilstab zum Überprüfen der Achse der Schnittebene.

6.3 Femurresektion

Abb. 21

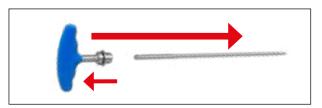


Abb. 22

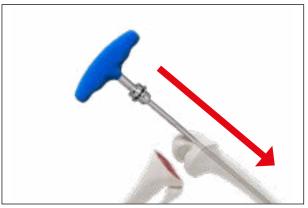


Abb. 23

Abb. 24

Distale Femurresektion

Entfernen Sie alle Osteophyten.

Öffnen Sie den Markkanal mit dem balanSys Bohrer 8,5/11 mm.

Der Eintrittspunkt wird durch Analyse der Ganzbein-Aufnahme bestimmt. Im Allgemeinen wird sich der 3–5 mm medial zur Spitze der Fossa intercondylaris und 7–10 mm anterior zum Ursprung des hinteren Kreuzbands (HKB) befinden.

Bohren Sie mit dem Bohrer vollständig bis zum Ende des Gewindes. Der Stufenbohrer vergrössert den Durchmesser des Lochs um 1,5 mm, um Druckverringerung im Kanal zu ermöglichen, wenn der Intramedullärstab eingesetzt wird.

Verbinden Sie den Griff mit dem Intramedullärstab.

Bemerkung

Ziehen Sie am Sicherungsring zum Verbinden und Lösen des Griffs.

Inserieren Sie den Intramedullärstab langsam und vollständig in das Femur, um die möglichst genaue Wiedergabe der anatomischen Achse zu gewährleisten. Der Intramedullärstab sollte keinerlei Kontakt zu dem kortikalen Knochen am Eintrittspunkt haben, um eine falsche Führung zu vermeiden. Sollte dies dennoch der Fall sein, entfernen Sie den Intramedullärstab und erweitern das Eintrittsloch mit dem Bohrer.

Entfernen Sie den Griff.

Bemerkung

Falls sich das Eintrittsloch ausserhalb der anatomischen Achse befindet, wird der Intramedullärstab fehlgeleitet. Dies kann zu Winkelfehlstellung der Femurkomponente führen. Damit dies vermieden wird, darf der Intramedullärstab den kortikalen Knochen nicht berühren, wenn er vollständig eingeführt ist. Sollte dies dennoch geschehen, entfernen Sie den Intramedullärstab und erweitern das Eintrittsloch mit dem Bohrer.

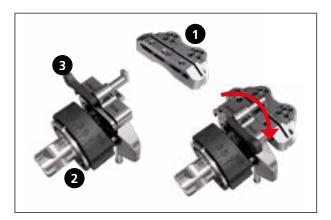


Abb. 25

Dazu setzen Sie die distale Schnittlehre ① auf das offene Verbindungsstück der Winkellehre ② mit dem Hebel ③ in offener Position. Anschliessend drehen Sie den Hebel auf «Verriegelt» («lock»), um die distale Schnittlehre zu sichern.

Die gesicherte distale Schnittlehre ist nach links und rechts verschiebbar.

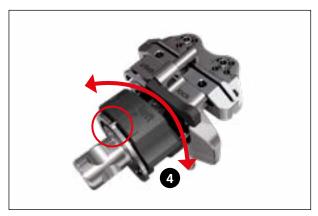


Abb. 26

Stellen Sie gemäss der präoperativen Planung den gewünschten Valguswinkel (0 bis 9 Grad) auf der Winkellehre ein

Drehen Sie das Stellrad 4 im oder gegen den Uhrzeigersinn auf die entsprechende Einstellung an der Einstellmarke (oben) ein. Beim Drehen weist das Stellrad spürbare Rastungen und Markierungen jeweils an einer 1° Position auf.

Die Markierung «Links» («left») ist für das linke Knie, die Markierung «Rechts» («right») für das rechte Knie.

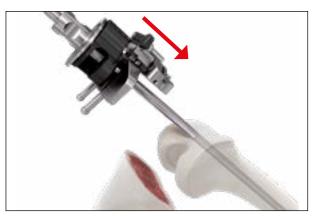


Abb. 27

Schieben Sie die Winkellehre mit der distalen Schnittlehre über den Intramedullärstab in Richtung Femur, bis die Winkellehre mindestens eine distale Kondyle berührt.

Da der distale Schnitt mit einem Winkel von 83° in Bezug auf den Intramedullärstab durchgeführt wird, muss die Winkellehre parallel zur transepikondylären Achse ausgerichtet sein.

Abb. 28

Abb. 29

Abb. 30

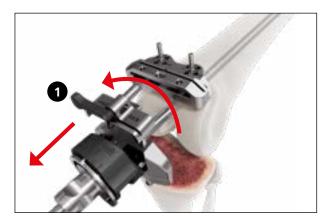


Abb. 31

Die distale Schnittlehre berührt im Regelfall nur eine anteriore Kondyle. Sie kann auf Basis der anatomischen Gegebenheiten mediolateral verschoben werden. Bohren Sie durch die zwei erhöhten Löcher der distalen Schnittlehre vor. Befestigen Sie die distale Schnittlehre mit zwei kopflosen Pins durch die erhöhten Löcher an das Femur.

Verschieben Sie die distalen Schnittlehre nicht mehr als 5 mm aus der Mitte, um zu vermeiden, dass der Bohrer auf den Intramedullärstab auftrifft. Andernfalls bohren Sie sorgfältig nur den kortikalen Knochen vor und lassen den Pin nach Entfernen des Intramedullärstabs vollständig einrasten.

Lösen Sie die Winkellehre aus der distalen Schnittlehre (drehen Sie den Hebel ① auf «Entriegeln» («unlock»)) und entfernen die Winkellehre und den Intramedullärstab.

Abb. 32



Überprüfen Sie die geplante distale Resektionsebene mit dem Tastblech.

Abb. 33

Je nach der Qualität des distalen Knorpels in dem Bereich, auf den die Winkellehre aufgesetzt wird, können durch Neupositionierung der distalen Schnittlehre zusätzliche Einstellungen vorgenommen werden. Entfernen Sie dazu die distale Schnittlehre von den Pins und positionieren sie auf den Gruppen von «-2», «-4» und «+2», «+4» markierten Löchern.

Die Markierungen auf der distalen Schnittlehre geben den Umfang der Knochenresektion im Verhältnis zu den erstmaligen distalen Resektionseinstellungen in Millimetern an.

Wenn notwendig, setzen Sie zur Erhöhung der Stabilität kopflose Pins durch die schrägen Pinlöcher ein.

Überprüfen Sie den Winkel der geplanten Resektionsebene mit dem Peilstab.

Abb. 37

Abb. 38

Führen Sie mit einem 1,27 mm Sägeblatt die distale Femurresektion aus.

Entfernen Sie die schrägen Pins und die distale Schnitt-

Je nach dem vom Chirurgen bevorzugten Verfahren können die Pins entfernt oder im Knochen belassen werden, um gegebenenfalls eine Nachresektion zu ermöglichen.

Bemerkung

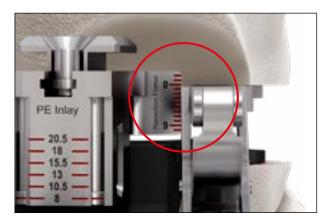
Platzieren Sie zum Schutz der Bänder während der Resektion des distalen Femurs Knochenhebel.

Entfernen Sie alle tibialen und femoralen Osteophyten und Knochenreste.

Abb. 39

Abb. 40

Abb. 41


Bestimmung Streckspalt

Den Bänderspanner einsetzen und bei voller Extension des Kniegelenks mit 150-80 Newton aufspannen. Die distale Femurosteotomie muss parallel zur Tibiaosteotomie verlaufen.

Gegebenenfalls Weichteilreleases durchführen und die Spannung der Ligamente erneut mit dem Bänderspanner kontrollieren.


Bemerkung

Der Extensionsspalt sollte medial und lateral gleich sein.

Die Skala der Resektionshöhe sollte bei guter Ausbalancierung des Knies in Extension auf 0 mm stehen.

Abb. 42

Beträgt die Resektionshöhe weniger als 0 mm, die Dicke des PE-Inlays mit der Stellschraube anpassen.

Beträgt die Resektionshöhe über 0 mm, sollte die entsprechende Knochenmenge von der proximalen Tibia geschnitten werden.

Bemerkung

Die Inlaydicken von 9 mm und 11,5 mm sind nur in vitamys verfügbar.



Abb. 44

Prüfung des Streckspalts

Verbinden Sie den schwarzen Spacerblock Femur mit dem entsprechenden blauen Spacerblock Tibia.

Der Spacerblock Femur entspricht der Dicke des Femurimplantats, distal und posterior (9 mm).

Der Spacerblock Tibia entspricht der Dicke des Tibiaplateaus plus der angegebenen Inlaydicke.

Abb. 45

Das System umfasst Spacerblöcke Tibia für 8/9 mm, 10,5/11,5 mm und 13/15,5 mm.

Für Inlaydicken von 18 mm und 20,5 mm muss die Spacer Shift Platte +5 mit dem balanSys Spacerblock Tibia 13/15,5 verbunden sein.

Bemerkung

Die Inlaydicken von 9 mm und 11,5 mm sind nur in vitamys verfügbar.

Abb. 46

Überprüfen Sie den Streckspalt durch Einsetzen des Spacerblock Femur mit dem entsprechenden Spacerblock Tibia. Der Streckspalt sollte bei vollständig gestrecktem Bein M-L balanciert sein. Falls der Streckspalt nicht ausbalanciert ist, passen Sie den Winkel entweder des tibialen oder des femoralen Schnitts an, oder führen Sie geeignete Ablösungen von Weichgewebe durch, um einen Ausgleich zu erzielen.

Bemerkung

Verbliebene dorsale Osteophyten können die Streckung beeinträchtigen und eine fälschliche Stabilität des Kapselbandapparats vortäuschen.

Abb. 47

Verbinden Sie den Peilstab Kurz mit dem Peilstab Lang.

Überprüfen Sie die mechanische Achse und die mediale und laterale Stabilität sowie die Streckungsmöglichkeit. Falls die Bedingungen ungünstig sind, kann eine Korrekturresektion am distalen Femur oder an der proximalen Tibia vorgenommen werden.

Entfernen Sie den Spacerblock und die Pins.

Abb. 48

Abb. 49

Abb. 50

Anteriore und posteriore Femurosteotomie mit Schrägschnitten

Den Distanzgeber mit der vormontierten Bohrführung in den Tensor einsetzen.

Bemerkung

Die gleiche Inlaydicke auf der Skala beibehalten, die zuvor für die Bestimmung der distalen Osteotomie mit dem Distanzgeber und / oder Bänderspanner verwendet wurde.

Die Bohrlehre für den 4in1-Schnittblock auf der distalen Femur-Resektionsfläche auflegen. Das Knie im 90° Winkel beugen und den kalibrierten Bänderspanner in das Gelenk einsetzen.

Den Flexionswinkel so lange verändern, bis die Bohrlehre flach an der distalen Resektionsfläche anliegt.

Anwenden von **80–100 Newton** zur symmetrischen Streckung des Gelenkraums.

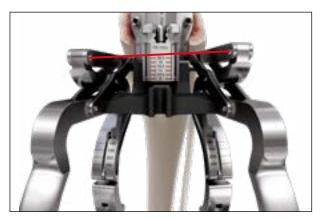


Abb. 51

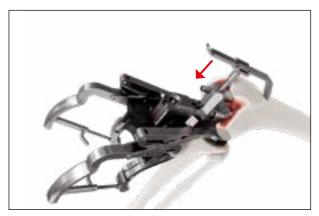


Abb. 52

Die Aussenrotation der Femurkomponente sollte 2–5° betragen.

Die Differenz zwischen medialen und lateralen Kondylen zur Messung der Aussenrotation verwenden. Die Differenz in Millimetern entspricht der Rotation in Grad (rote Linie in Abb. 51). Als Richtwert Resektion von <9 mm lateral und >9 mm medial.

Bemerkung

- Bei ausgeprägten Fehlstellungen (z. B. Dysplasie des lateralen Femurkondylus) ist die Rotation mit Hilfe der Epikondylenachse als Führungslinie zu bestätigen.
- Bei einer Aussenrotation < 2° ein Release der lateralen Bandstrukturen vornehmen und die vorhandenen dorsalen Osteophyten und femorolateralen Adhäsionen entfernen.
- Bei einer Aussenrotation > 5° ein Release der medialen Bandstrukturen vornehmen und die femoromedialen Osteophyten und Adhäsionen entfernen.

Einlegen des Femurtasters zur Bestimmung der Femurprothesengrösse.

Abb. 53

Abb. 54

Die Femurgrössenbestimmung erfolgt mit dem anterioren Femurtaster, der auf die höchste Erhebung der Femurmetaphyse gelegt wird.

Die Femurgrösse wird von der distalen Skala und dem anterioren Femurtaster bestimmt:

- 1. Ablesen der Markierung auf der distalen Skala.
- 2. Die Grösse auf dem anterioren Femurtaster an die Grösse auf der distalen Skala anpassen.
- 3. Beide müssen übereinstimmen.

Bemerkung

Die Grösse des Femurs muss mit der zuvor bestimmten Tibiagrösse (Anhang 8.1) übereinstimmen. Die ringförmigen Markierungen zeigen die ungefähre Femurgrösse.

Überprüfen der Spannkraft – diese sollte noch immer **80 bis 100 Newton** betragen – und Vorbohren der zwei Aufnahmelöcher für den 4in1-Schnittblock.

Entfernen sämtlicher Instrumente.

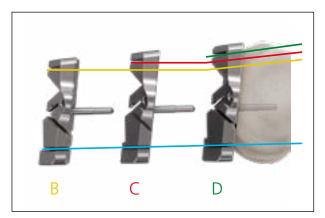


Abb. 55

Femorale 4-in-1-Resektion

Der Unterschied der AP-Abmessung der balanSys Femurkomponenten beträgt ungefähr 3 mm pro Grösse (mit Ausnahme des Unterschieds von Grösse E zu Grösse F, die 4 mm beträgt).

Der Abstand zwischen dem posterioren Schnitt und der Fixierung ist über alle 4in1-Schnittblöcke gleich, wodurch der Beugespalt durch sämtliche Grössen hindurch konstant bleibt.

Abb. 56

Positionieren Sie den ausgewählten 4in1-Schnittblock mithilfe der Pinzange in die zwei vorgebohrten Löcher, bis er plan auf der distalen Resektionsfläche anliegt. Falls erforderlich, können Sie einen Hammer auf der Pinzange verwenden.

Das Instrument muss flächig auf dem distalen Schnitt aufsitzen.

Abb. 57

Der Beugespalt kann mithilfe eines unterhalb des 4in1-Schnittblocks positionierten Spacerblocks Tibia überprüft werden. Verwenden Sie dieselbe Dicke wie für die Streckspaltbalancierung, aber alleinig mit dem Spacerblock Tibia.

Überprüfen Sie die anterioren und posterioren Schnitte mit dem Tastblech.

Bemerkung

Überhang des anterioren Schilds kann negative Auswirkungen auf die Patellafunktion haben. Notching des anterioren Kortex des Femurs kann zu Frakturen führen. Beides muss vermieden werden.

Optional

Abb. 58

A-P-Einstellung (Shifting) der Femurkomponente mit dem 4in1-Schnittblock

Der 4in1-Schnittblock kann um 1,5 mm in anteriore und 1,5 mm in posteriore Richtung versetzt werden. Bohren Sie die entsprechenden Bohrlöcher medial und lateral durch den 4in1-Schnittblock vor. Verwenden Sie die anterioren Bohrlöcher zum Versetzten um 1,5 mm in anteriore Richtung. Verwenden Sie die posterioren Bohrlöcher zum Versetzen um 1,5 mm in posteriore Richtung.

Abb. 59

Positionieren Sie mithilfe der Pinzange den Schnittblock neu in die neu vorgebohrten Löcher, bis er flächig auf der distalen Resektionsfläche anliegt. Falls erforderlich, können Sie einen Hammer auf der Pinzange verwenden.

Überprüfen Sie nochmals den Beugespalt und die Schnitte.

Das Instrument muss flächig auf dem distalen Schnitt aufsitzen.

Bemerkung

Die Positionierung der Femurkomponente ist posterior referenziert, was eine gute Kontrolle des Beugespalts ermöglicht. Anteriores Shifting lockert den Beugespalt. Posteriores Shifting verengt den Beugespalt.

Abb. 60

Abb. 61

Abb. 62

Befestigen Sie den Schnittblock mit zwei Pins medial und lateral. Nehmen Sie die Resektionen mit einem 1,27 mm Sägeblatt durch die Sägeschlitze in folgender Reihenfolge vor:

- 1. Anteriore Resektion
- 2. Posteriore Resektion
- 3. Schrägschnitte

Entfernen Sie die Pins und den 4in1-Schnittblock mit der Zange.

Positionieren Sie Retraktoren zum Schutz der Weichgewebe an den medialen und lateralen Seitenbändern und der Kniebeugesehne.

Bemerkung

Die posterioren Resektionen sollten mit dem Knie in 90° Beugung vorgenommen werden, da dadurch eine Berührung der Tibiaoberfläche mit dem Sägeblatt vermieden wird und die posterioren Weichgewebe von den posterioren Kondylen weg bewegt werden.

Bemerkung

Die posterioren Sägeschlitze sind medial und lateral offen, um vollständige Sägeschnitte zu ermöglichen. Um die Gefahr eines unbeabsichtigten Rückschlags des Sägeblatts zu reduzieren, richten Sie die Säge leicht in Richtung der Mittellinie aus, bevor Sie mit dem Sägen beginnen.

Abb. 63

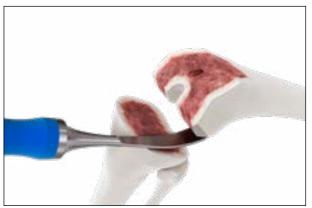


Abb. 64

Abb. 65

Entfernen sämtlicher Knochenreste und aller Osteophyten insbesondere im Bereich der posterioren Kondylen.

Überprüfung des Beugespalts

Einsetzen des Spacerblock (Femur und Tibia) in den Beugespalt mit dem Spacerblock Tibia, wie vorstehend definiert in Streckung (siehe Abbildung 46). Überprüfung der Stabilität der Bänder, sowohl medial als auch lateral.

Bemerkung

Es ist empfehlenswert, den Streckspalt ebenfalls erneut zu überprüfen. Das Entfernen der posterioren Osteophyten kann sich auf die Stabilität auswirken.

6.4 Femorale Vorbereitung und Probereposition

Je nachdem, ob eine CR- oder PS-Femurkomponente geplant ist, ist die finale Vorbereitung des Femurs unterschiedlich. Im Folgenden werden die Operationsschritte für die CR-Femurkomponente dargestellt. Zur Vorbereitung und Implantation der PS-Femurkomponente befolgen Sie die Operationsschritte in Anhang 7.1 – PS – Vorbereitung und Implantation.

Abb. 66

Abb. 67

Femorale Vorbereitung

Die Trochleafräsenlehre wird, mit dem Eintritt für die Reibahle auf der anterioren Seite, auf dem Femur positioniert und mit mindestens zwei Pins diagonal fixiert.

Bemerkung

Die Autoren empfehlen die Positionierung der Trochleafräsenlehre leicht lateral im Interesse der optimalen Patellaführung. Die Knochenresektion ermöglicht die Korrektur der M-L-Position der Femurkomponente um bis zu 1,5 mm. Vermeiden Sie Überhang der finalen Komponente.

Verbinden Sie die Trochleafräse mit einer Bohrmaschine.

Die Trochlea wird durch Vorschieben der Trochleafräse zum Anschlag gefräst. Beginnen Sie nicht mit dem Fräsen, bevor der zentrale Führungsstift eingerastet ist

Entfernen Sie sämtliche Instrumente.

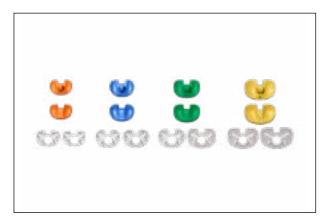


Abb. 68

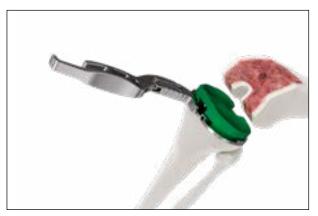


Abb. 69

Abb. 70

Probereposition

Es sind 4 Grössen von Testinlays verfügbar. Verwenden Sie das Testinlay, das zur entsprechenden Tibiagrössenlehre passt.

Die Tibiagrössenlehren und Testinlays sind mit den folgenden Symbolen markiert:

Kombinieren Sie nur Tibiagrössenlehren und Testinlays mit identischen Symbolen.

Positionieren Sie die ausgewählte Tibiagrössenlehre und das Testinlay mit dem Tibiagrössenlehrenhalter auf die resezierte Tibia.

Es muss gewährleistet sein, dass die ausgewählte Tibiagrössenlehre die gewünschte Abdeckung der Tibia bietet und die ausgewählte Femurgrösse berücksichtigt.

Bemerkung

Die mit den ausgewählten Tibiagrössen kompatiblen Femurgrössen sind auf den Tibiagrössenlehren markiert.

Bemerkung

Falls gewünscht, kann die Tibiagrössenlehre mit zwei kurzen Pins mit Köpfen fixiert werden, bevor das Testinlay eingesetzt wird.

Setzen Sie das ausgewählte Testfemur mit dem Femurhalter ein.

Zum Befestigen des Testfemurs auf dem Femurhalter drehen Sie den Griff gegen den Uhrzeigersinn. Öffnen Sie die Klemmen und bringen Sie das Testfemur in der auf dem Instrument angegebenen Richtung an. Befestigen Sie das Testfemur durch Drehen des Griffs im Uhrzeigersinn, bis es fest sitzt.

Verwenden Sie den Femureinschläger, um das Testfemur in die finale Position zu bringen. Anwendung von Gewalt auf den Femurhalter kann zu Beschädigung des Instruments führen.

Abb. 71

Schlagen Sie das Testfemur mit dem Femureinschläger und einem Hammer ein, bis es vollständig auf dem Knochen aufsitzt.

Vermeiden Sie eine Flexionsposition der Femurkomponente.

Abb. 73

Reposition des Streckapparats.

Wenn sich alle vorgesehenen Komponenten in ihrer Position befinden, wird das Knie bei 0° -30° -60° -90° mindestens auf die folgenden Parameter getestet:

- Bewegungsumfang
- Stabilität
- HKB-Stabilität
- Kinematik und Mobilität
- Mechanische Achse
- Tibiaüberhang
- Implantatrotation
- Patellaführung

Um die korrekte Position der Tibiakomponente zu merken, markieren Sie die Position der Tibiagrössenlehre anterior mit dem elektrochirurgischen Messer auf der Tibia. Die Tibiagrössenlehre kann mit kurzen Kopfpins fixiert werden.

Bemerkung

Falls die Patellarückfläche ersetzt werden soll, ist es empfehlenswert, die Patella-Resektion durchzuführen und die Patella-Testkomponente zu positionieren, bevor die Kniefunktion getestet wird.

Abb. 74

Bohren Sie die zwei Löcher für die Femur-Verankerungspegs mit dem 6 mm Bohrer.

Bemerkung

Testfemora mit Kratzern können zu Beschädigung der Testinlays führen und müssen ersetzt werden.

Abb. 75

Entfernen des Testinlays und des Testfemurs.

Das Testinlay kann mit dem Griffende des Tibiagrössenlehrenhalters angehoben werden. Verwenden Sie für das Testfemur den Femur-Ausschläger.

Abb. 76

Finale Vorbereitung der Tibia

Die Tibiagrössenlehre wird mit zwei kurzen Kopfpins fixiert.

Überzeugen Sie sich, dass Ihre Markierungen auf dem Tibiakopf mit denen auf der Tibiagrössenlehre übereinstimmen.

Position der Meisselzentrierlehre.

Setzen Sie die Halterungen in die ovalen Löcher in der Tibiagrössenlehre ein.

Abb. 78

Zum Positionieren der Meisselzentrierlehre muss sich der Verriegelungsmechanismus an der anterioren Seite in der vertikalen offenen Position befinden ($^{\bullet}$ $_{\bullet}$).

Zum Fixieren der Meisselzentrierlehre auf der Tibiagrössenlehre drehen Sie den Knopf in die horizontale geschlossene Position (Θ).

Abb. 79

Führen Sie die Aufsatz-Fräsführung in die Tibiazentrierlehre ein.

Abb. 80

Abb. 81

Verbinden Sie die Reibahle mit einer Bohrmaschine.

Setzen Sie die Reibahle in die Fräsführung ein, bevor Sie mit dem Bohren beginnen. Bohren Sie den Tibia-Markraum aus.

Die Tiefe muss der erforderlichen Länge des Tibiakiels des vorgesehenen balanSys PS-Tibiaplateaus entsprechen. Dies wird erreicht, wenn sich die Grössenmarkierungen auf der Reibahle auf gleichem Niveau mit der Oberkante der Fräsführung befinden.

Entfernen Sie die Reibahle und die Aufsatz-Fräsführung.

Abb. 82

Abb. 83



Abb. 84

Schrauben Sie den Finnenmeissel auf den Griff für den Tibiameissel.

Den Finnenmeissel gibt es in zwei Grössen. Der kleinere kann für Tibiagrössen von 59 bis 70, und der grössere für alle Tibiagrössen verwendet werden.

Setzen Sie die Finnenmeissel-Anordnung in die Meisselzentrierlehre ein.

Achten Sie darauf, die Seitenbänder und die Poplitea zu schützen.

Schlagen Sie den Finnenmeissel ein, bis die Anschläge für die Instrumententiefe auf der Tibiagrössenlehre aufliegen. Die jeweilige Tiefe der Finnen wird durch die Grösse der Tibiagrössenlehre definiert.

Um eine Fraktur an der Tibia zu verhindern, hämmern Sie sehr vorsichtig auf den Finnenmeissel. Falls der Knochen medial oder lateral sklerotisch ist, kann es hilfreich sein, den Finnenschlitz anfangs mit einer oszillierenden Säge oder einem Hochgeschwindigkeitsfräser vorzubereiten.

Entfernen Sie sämtliche verbliebenen Instrumente.

Optional

Abb. 85

Test Rotationsplattform (RP)

Zum Testen des RP-Implantats verbinden Sie die Pinzange mit dem RP-Tibiatestplateau

Setzen Sie das RP-Tibiatestplateau in das vorbereitete Tibiaplateau ein, bis es vollständig und gut sitzt.

Abb. 86

Abb. 87

Setzen Sie das vorgesehene RP-PE-Testinlay ein.

Es muss gewährleistet sein, dass das ausgewählte RP-PE-Testinlay die ausgewählte Femurgrösse berücksichtigt.

Setzen Sie das vorgesehene Testfemur mit dem Femurhalter ein.

Zum Befestigen des Testfemurs auf dem Femurhalter drehen Sie den Griff gegen den Uhrzeigersinn. Öffnen Sie die Klemmen und bringen Sie das Testfemur in der auf dem Instrument angegebenen Richtung an. Befestigen Sie das Testfemur durch Drehen des Griffs im Uhrzeigersinn, bis es fest sitzt.

Bemerkung

Testfemora mit Kratzern können zu Beschädigung der Testinlays führen und müssen ersetzt werden.

Verwenden Sie den Femureinschläger, um das Testfemur in die finale Position zu bringen. Anwendung von Gewalt auf den Femurhalter kann zu Beschädigung des Instruments führen

Abb. 88

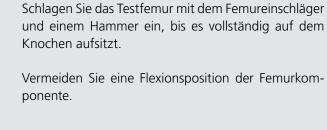


Abb. 89

Reposition des Streckapparats.

Wenn sich alle vorgesehenen Komponenten in ihrer Position befinden, wird das Knie bei 0° -30° -60° -90° mindestens auf die folgenden Parameter getestet:

- Bewegungsumfang
- Stabilität
- HKB-Stabilität
- Kinematik und Mobilität
- Mechanische Achse
- Tibiaüberhang
- Implantatrotation
- Patellaführung

Falls dies im Schritt «Probereposition» (Abbildung 74) noch nicht erfolgt ist, bohren Sie die zwei Löcher für die Femur-Verankerungspegs mit dem 6 mm Bohrer.

Entfernen des Testfemurs und des Testinlays.

6.5 Implantation der endgültigen Implantate

Abb. 90

Bei sklerotischem Knochen können kurze Bohrkanäle verwendet werden, um die Verzahnung des Zements zu verbessern.

Reinigen Sie die Osteotomieflächen gründlich (z.B. mittels Pulslavage).

Abb. 91

91

Abb. 92

Ziehen Sie stets frische Handschuhe an, bevor Sie die endgültigen Implantate auspacken und mit der Zementzubereitung beginnen. Verwenden Sie saubere und trockene Handschuhe für die Zementierung.

Tibia

Nachdem die Implantate ausgewählt wurden, ist eine letzte Überprüfung empfehlenswert, um sicherzugehen, dass die femoralen, tibialen und PE-Inlay-Komponenten zueinander passen.

Befestigen Sie das Setzinstrument Tibiaplateau an dem ausgewählten Tibiaplateau.

Für das fixe Tibiaplateau das Instrument posterior unter dem Rand einhaken; dann wird es durch Drehen des anterioren Knopfs im Uhrzeigersinn fixiert, während das Instrument flach auf der Tibiaplateauoberfläche aufliegt.

Setzinstrument Tibiaplateau RP

Für das RP Tibiaplateau den anterioren Knopf gegen den Uhrzeigersinn bis zum Anschlag drehen. Das Setzinstrument Tibiaplateau RP am ausgewählten Tibiaplateau anbringen. Die Fixierung erfolgt durch Drehen des anterioren Knopfes im Uhrzeigersinn, während das Instrument flach auf der Oberfläche des Tibiaplateaus aufliegt.



Abb. 93

Abb. 94

Mischen Sie den Knochenzement an. Tragen Sie eine dicke Schicht Zement auf den Knochen oder das Implantat auf.

Der Zement sollte sich beim Auftragen in der frühen Teigphase befinden. Befolgen Sie die Anweisungen für den spezifischen Knochenzement.

Zum sicheren Fixieren des Tibiaplateaus in dem Knochen ist es notwendig, dass die Rückseite der Tibia in der Teigphase des Zements vollständig zementiert wird. Der Schaft und die Finnen können, müssen aber nicht zementiert werden.

Wenn das Tibiaplateau nicht vollständig zementiert und eingeschlagen wird, kann dies zu vorzeitiger Lockerung der Prothese führen. Darüber hinaus kann Zementieren in fortgeschrittenen Stadien der Polymerisation zu vorzeitiger Lockerung der Prothese führen.

Bemerkung

Übermässige Zementextrusion sollte insbesondere im posterioren Abschnitt der Tibia vermieden werden. Posterior extrudierter Zement ist schwer zu entfernen.

Schlagen Sie das Tibiaplateau mit einem Hammer und dem Tibiaeinschläger ein, bis das Tibiaplateau vollständig auf dem resezierten Knochen aufsitzt. Drücken Sie anschliessend das Tibiaplateau mit dem Tibiaeinschläger an, bis der Zement ausgehärtet ist.

Verwenden Sie eine Kürette zum Entfernen sämtlichen extrudierten Knochenzements. Überprüfen Sie sorgfältig den posterioren Bereich auf Zementrückstände.

Bemerkung

Vermeiden Sie Bewegen der Komponenten, während der Zement aushärtet.

Abb. 95

KIICK!

Abb. 96

Der Femureinschläger

- Einschlagen der Femurkomponente
- Zusätzlicher Stoss zum Positionieren des anterioren Schilds
- Einsetzen des Inlays

Femur und Einsatz CR und UC

Setzen Sie das endgültige CR- oder UC-Inlay mit der vorgesehenen Grösse und Dicke ein.

Das Inlay wird zuerst unter dem posterioren Rand eingehakt und anschliessend an dem anterioren Rand eingerastet.

Abb. 97

Abb. 98

Abb. 99

Befestigen Sie das Femur an dem Femurhalter. Drehen Sie den Griff gegen den Uhrzeigersinn, öffnen Sie die Klemmen, und bringen Sie das Testfemur in der auf dem Instrument angegebenen Richtung an. Befestigen Sie das Femur durch Drehen des Griffs im Uhrzeigersinn, bis es fest sitzt.

Setzen Sie die ausgewählte CR-Femurkomponente (zementiert oder unzementiert) mit dem Femurhalter ein. Das Knie muss sich in 90° Beugung befinden, um Impingement gegen den Inlay zu vermeiden. Wenn ein zementiertes Femur verwendet wird, tragen Sie eine dicke Schicht Zement auf das Implantat auf.

Bemerkung

Die Reibung ist auf der ventralen Seite stärker als auf der dorsalen, insbesondere wenn ein unzementiertes Implantat verwendet wird. Drücken Sie in ventraler Richtung auf den Halter, um eine Flexionsposition der Femurkomponente zu vermeiden. Optional kann der Femureinschläger zur Korrektur der Femurkomponente an der Fossa positioniert werden.

Treiben Sie die Femurkomponente auf den Knochen, bis sie nicht mehr als 1–2 mm hervorsteht; anschliessend entfernen Sie den Femurhalter. Verwenden Sie den Femureinschläger und einen Hammer, um die Femurkomponente, bis zum vollständigen Sitz auf dem Knochen aufzuschlagen. Platzieren Sie das Instrument in leicht posteriorer Position, um eine Flexionsposition der Femurkomponente zu vermeiden.

Verwenden Sie eine Kürette zum Entfernen sämtlichen extrudierten Knochenzements. Überprüfen Sie sorgfältig die Fossa und den posterioren Bereich auf Zementrückstände.

Verwenden Sie nur den Femureinschläger, um das Testfemur in die finale Position zu bringen. Anwendung von Gewalt auf den Femurhalter kann das Instrument beschädigen.

Abb. 100

Falls erwünscht, können Testinlays auf dem endgültigen Tibiaplateau zur nochmaligen Überprüfung von Funktion und Stabilität des Knies mit der geplanten Dicke des Inlays verwendet werden.

Die Testinlays passen jeweils zu zwei Tibiagrössen. Verwenden Sie den Testinlay-Adapter für die jeweils höheren Tibiagrössen, um einen stabilen Zustand zu erhalten.

Abb. 101

Das Bein sollte sich während des Aushärtens des Knochenzements in Streckung befinden.

Vermeiden Sie Überstreckung während des Aushärtens des Knochenzements. Überstreckung führt anterior zu hohem Druck, was Schiefstellung des Tibiaimplantats nach sich ziehen kann.

6.6 Rotationsplattform – Femur und Inlay

Abb. 102

Zum Einfügen des Rotationsplattform Inlay (RP) setzen Sie den balanSys Bolzen für das RP Tibiaplateau in das Loch im Tibiaplateau ein.

Bemerkung

Achten Sie darauf, dass sich keine Fremdkörper in dem aufnehmenden Bohrung des Tibiaplateaus befinden.

Bemerkung

Der Bolzen ist mit dem Tibiaplateau verpackt.



Abb. 103

Abb. 104

Einsetzen des balanSys RP-PE-Inlays oberhalb des balanSys-Bolzens für das RP Tibiaplateau.

Befestigen Sie das Femur an dem Femurhalter. Drehen Sie den Griff gegen den Uhrzeigersinn, öffnen Sie die Klemmen, und bringen Sie das Testfemur in der auf dem Instrument angegebenen Richtung an. Befestigen Sie das Femur durch Drehen des Griffs im Uhrzeigersinn, bis es fest sitzt.

Setzen Sie die ausgewählte CR-Femurkomponente (zementiert oder unzementiert) mit dem Femurhalter ein. Das Knie muss sich in 90° Beugung befinden, um Impingement gegen den Einsatz zu vermeiden. Wenn ein zementiertes Femur verwendet wird, tragen Sie eine dicke Schicht Zement auf das Implantat auf.

Bemerkung

Die Reibung ist auf der ventralen Seite stärker als auf der dorsalen, insbesondere wenn ein unzementiertes Implantat verwendet wird. Drücken Sie in ventraler Richtung auf den Halter, um eine Flexionsposition der Femurkomponente zu vermeiden. Optional kann der Femureinschläger zur Korrektur der Femurkomponente an der Fossa positioniert werden.

Abb. 105

Treiben Sie die Femurkomponente auf den Knochen, bis sie nicht mehr als 1–2 mm hervorsteht; entfernen Sie anschliessend den Femurhalter. Verwenden Sie den Femureinschläger und einen Hammer, um die Femurkomponente, bis zum vollständigen Sitz auf dem Knochen aufzuschlagen. Platzieren Sie das Instrument in leicht posteriorer Position, um eine Flexionsposition der Femurkomponente zu vermeiden.

Abb. 106

Verwenden Sie eine Kürette zum Entfernen sämtlichen extrudierten Knochenzements. Überprüfen Sie sorgfältig die Fossa und den posterioren Bereich auf Zementrückstände.

Verwenden Sie nur den Femureinschläger, um das Testfemur in die finale Position zu bringen. Anwendung von Gewalt auf den Femurhalter kann das Instrument beschädigen.

Abb. 107

Das Bein sollte sich während des Aushärtens des Knochenzements in Streckung befinden.

Vermeiden Sie Überstreckung während des Aushärtens des Knochenzements. Überstreckung führt anterior zu hohem Druck, was Schiefstellung des Tibiaimplantats nach sich ziehen kann.

7. Anhang

7.1 PS – Vorbereitung und Implantation

Abb. 108

Abb. 109

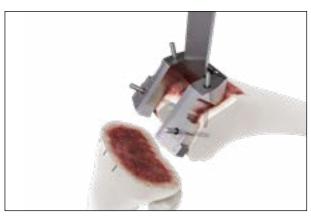


Abb. 110

Femorale Vorbereitung

Eine Femurkastenschnittlehre geeigneter Grösse wird auf dem Femur positioniert. Sie muss bündig auf den resezierten Oberflächen des posterioren und distalen Femurs aufliegen.

Die Schnittlehre muss mit vier Pins diagonal an dem Femur befestigt werden. Die posterioren Pins müssen zuerst eingeführt werden.

Die Grössenlehren medial und lateral zeigen die breiteste M-L-Abmessung der markierten Femurgrösse.

Bemerkung

Die Autoren empfehlen die Positionierung der Femurkastenschnittlehre leicht lateral im Interesse einer optimalen Patellaführung. Vermeiden Sie einen Überhang der endgültigen Komponente.

Eine Stichsäge sollte verwendet und entlang der Wände des offenen Kastens geführt werden, um die medialen und lateralen Seiten und die Basis der Fossa intercondylaris zu schneiden.

Verwenden Sie Pins in den zwei anterioren Pinlöchern als Anschläge für die Säge.

Mithilfe einer Säge sollte ausserdem die Basis der Fossa intercondylaris herausgeschnitten werden. Anschliessend wird der Block mit dem balanSys Meissel A–F bzw. XS–S mobilisiert.

Abb. 111

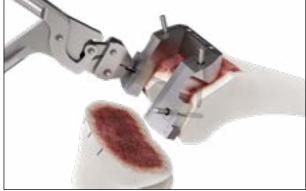


Abb. 112

Abb. 113

Nach dem Schneiden werden die Femurkastenschnittlehre und die Pins in folgender Reihenfolge entfernt:

- 1. Pins
- 2. Schnittlehre
- 3. Resezierter Knochenblock

Probereposition

Setzen Sie das ausgewählte Testfemur mit dem Femurhalter ein.

Zum Befestigen des Testfemurs auf dem Femurhalter drehen Sie den Griff gegen den Uhrzeigersinn. Öffnen Sie die Klemmen und bringen Sie das Testfemur in der auf dem Instrument angegebenen Richtung an. Befestigen Sie das Testfemur durch Drehen des Griffs im Uhrzeigersinn, bis es fest sitzt.

Verwenden Sie den Femureinschläger, um das Testfemur in die finale Position zu bringen. Anwendung von Gewalt auf den Femurhalter kann zu Beschädigung des Instruments führen.

Schlagen Sie das Testfemur mit dem Femureinschläger und einem Hammer ein, bis es vollständig auf dem Knochen aufsitzt.

Vermeiden Sie eine Flexionsposition der Femurkomponente.

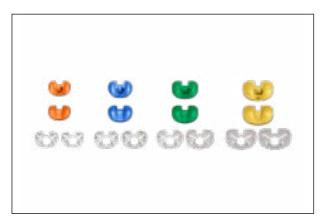
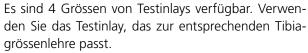
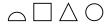




Abb. 114

Die Tibiagrössenlehren und Testinlays sind mit den folgenden Symbolen markiert:

Kombinieren Sie nur Tibiagrössenlehren und Testinlays mit identischen Symbolen.

Abb. 115

Sobald das Femur eingeschlagen ist, muss die Tibia anterior mit einem Knochenhebel subluxiert werden, um die Tibiagrössenlehre und das PS-Testinlay zu positionieren.

Positionieren Sie die ausgewählte Tibiagrössenlehre und das PS-Testinlay mit dem Tibiagrössenlehrenhalter auf die resezierte Tibia.

Es muss gewährleistet sein, dass die ausgewählte Grössenlehre die gewünschte Abdeckung der Tibia bietet und die ausgewählte Femurgrösse berücksichtigt.

Bemerkung

Die mit der ausgewählten Tibia kompatiblen Femurgrössen werden auf den Tibiagrössenlehren markiert.

Bemerkung

Falls gewünscht, kann die Tibiagrössenlehre mit zwei kurzen Kopfpins fixiert werden, bevor das Testinlay eingesetzt wird.

Abb. 116

Abb. 117

Abb. 118

Reposition des Streckapparats.

Wenn sich alle vorgesehenen Komponenten in ihrer Position befinden, wird das Knie bei 0° -30° -60° -90° mindestens auf die folgenden Parameter getestet:

- Bewegungsumfang
- Stabilität
- Kinematik und Mobilität
- Mechanische Achse
- Tibiaüberhang
- Implantatrotation
- Patellaführung

Um die korrekte Position der Tibiakomponente zu merken, markieren Sie die Position der Tibiagrössenlehre anterior mit dem elektrochirurgischen Messer auf der Tibia. Die Tibiagrössenlehre kann mit kurzen Kopfpins fixiert werden.

Bemerkung

Falls die Patella ersetzt werden soll, ist es empfehlenswert, die Patella-Resektion durchzuführen und die Patella-Testkomponente zu positionieren, bevor die Kniefunktion getestet wird.

Entfernen des Testinlays und des Testfemurs.

Das Testinlay kann mit dem Griffende des Tibiagrössenlehrenhalters angehoben werden. Verwenden Sie für das Testfemur den Femur-Ausschläger 71.34.0788.

Bemerkung

Testfemora mit Kratzern können zu Beschädigung der Testinlays führen und müssen ersetzt werden.

Abb. 119

Finale Vorbereitung der Tibia

Die Tibiagrössenlehre wird mit zwei kurzen Kopfpins fixiert.

Überzeugen Sie sich, dass Ihre Markierungen auf dem Tibiakopf mit denen auf der Tibiagrössenlehre übereinstimmen.

Position der Meisselzentrierlehre.

Setzen Sie die Halterungen in die ovalen Löcher in der Tibiagrössenlehre ein.

Abb. 121

Zum Positionieren der Meisselzentrierlehre muss sich der Verriegelungsmechanismus an der anterioren Seite in der vertikalen offenen Position befinden (**b**).

Zum Fixieren der Meisselzentrierlehre auf der Tibiagrössenlehre drehen Sie den Knopf in die horizontale geschlossene Position (Θ).

Abb. 122

Führen Sie die Aufsatz-Fräsführung in die Tibiazentrierlehre ein.

Abb. 123

Abb. 124

Verbinden Sie die Reibahle mit einer Bohrmaschine.

Setzen Sie die Reibahle in die Fräsführung ein, bevor Sie mit dem Bohren beginnen. Bohren Sie den Tibia-Markraum aus.

Die Tiefe muss der Schaftlänge des vorgesehenen balanSys PS-Tibiaplateaus entsprechen. Dies wird erreicht, wenn sich die Grössenmarkierungen auf der Reibahle auf gleichem Niveau mit der Oberkante der Fräsführung befinden.

Entfernen Sie die Reibahle und die Aufsatz-Fräsführung.

Abb. 125

Abb. 126

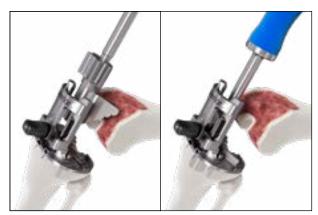


Abb. 127

Schrauben Sie den Finnenmeissel auf den Griff für den Tibiameissel.

Den Finnenmeissel gibt es in zwei Grössen. Der kleinere kann für Tibiagrössen von 59 bis 70, und der grössere für alle Tibiagrössen verwendet werden.

Setzen Sie die Finnenmeissel-Anordnung in die Meisselzentrierlehre ein.

Achten Sie darauf, das Seitenband und die Poplitea zu schützen.

Schlagen Sie den Finnenmeissel ein, bis die Anschläge für die Instrumententiefe auf der Tibiagrössenlehre aufliegen. Die jeweilige Tiefe der Finnen wird durch die Grösse der Tibiagrössenlehre definiert.

Um eine Fraktur an der Tibia zu verhindern, hämmern Sie sehr vorsichtig auf den Finnenmeissel. Falls der Knochen medial oder lateral sklerotisch ist, kann es hilfreich sein, den Finnenschlitz anfangs mit einer oszillierenden Säge oder einem Hochgeschwindigkeitsfräser vorzubereiten.

Entfernen Sie sämtliche verbliebenen Instrumente.

Abb. 128

Bei sklerotischem Knochen können kurze Bohrkanäle verwendet werden, um die Interdigitation des Zements zu verbessern.

Reinigen Sie die Osteotomieflächen gründlich (z.B. mittels Pulslavage).

Abb. 129

Abb. 130

Ziehen Sie stets frische Handschuhe an, bevor Sie die endgültigen Implantate auspacken und mit der Zementzubereitung beginnen. Verwenden Sie saubere und trockene Handschuhe für die Zementierung.

Tibia

Nachdem die Implantate ausgewählt wurden, ist eine letzte Überprüfung empfehlenswert, um sicherzugehen, dass die femoralen, tibialen und PE-Inlay-Komponenten zueinander passen.

Befestigen Sie das Setzinstrument Tibiaplateau an dem ausgewählten Tibiaplateau.

Zuerst hakt das Instrument posterior unter dem Rand ein; dann wird es durch Drehen des anterioren Knopfs im Uhrzeigersinn fixiert, während das Instrument flach auf der Tibiaplateauoberfläche sitzt.

Abb. 131

Mischen Sie den Knochenzement an. Tragen Sie eine dicke Schicht Zement auf den Knochen oder das Implantat auf.

Der Zement sollte sich beim Auftragen in der frühen Teigphase befinden. Befolgen Sie die Anweisungen für den spezifischen Knochenzement.

Zum sicheren Fixieren des Tibiaplateaus in dem Knochen ist es notwendig, dass die Rückseite der Tibia in der Teigphase des Zements vollständig zementiert wird. Der Schaft und die Finnen können, müssen aber nicht zementiert werden.

Wenn das Tibiaplateau nicht vollständig zementiert und eingeschlagen wird, kann dies zu vorzeitiger Lockerung der Prothese führen. Darüber hinaus kann Zementieren in fortgeschrittenen Stadien der Polymerisation zu vorzeitiger Lockerung der Prothese führen.

Bemerkung

Übermässige Zementextrusion sollte insbesondere im posterioren Abschnitt der Tibia vermieden werden. Posterior extrudierter Zement ist schwer zu entfernen.

Abb. 132

Schlagen Sie das Tibiaplateau mit einem Hammer und dem Tibiaeinschläger ein, bis das Tibiaplateau vollständig auf dem resezierten Knochen aufsitzt. Drücken Sie anschliessend das Tibiaplateau mit dem Tibiaeinschläger an, bis der Zement ausgehärtet ist.

Verwenden Sie eine Kürette zum Entfernen sämtlichen extrudierten Knochenzements. Überprüfen Sie sorgfältig den posterioren Bereich auf Zementrückstände.

Bemerkung

Vermeiden Sie Bewegen der Komponenten, während der Zement aushärtet.

Abb. 133

Abb. 134

Der Femureinschläger

- Einschlagen der Femurkomponente
- Zusätzlicher Stoss zum Positionieren des anterioren Schilds
- Einsetzen des Inlays

Femurimplantat und -einsatz

Befestigen Sie das Femur an dem Femurhalter. Drehen Sie den Griff gegen den Uhrzeigersinn, öffnen Sie die Klemmen, und bringen Sie das Testfemur in der auf dem Instrument angegebenen Richtung an. Befestigen Sie das Femur durch Drehen des Griffs im Uhrzeigersinn, bis es fest sitzt.

Setzen Sie die ausgewählte PS-Femurkomponente (zementiert oder unzementiert) mithilfe des Femurhalters ein. Das Knie muss sich in 90° Beugung befinden, um Impingement gegen die Tibia zu vermeiden. Falls ein zementiertes Femur verwendet wird, tragen Sie eine dicke Schicht Zement auf das Implantat auf.

Bemerkung

Die Reibung ist auf der ventralen Seite stärker als auf der dorsalen. Drücken Sie in ventraler Richtung auf den Halter, um eine Flexionsposition der Femurkomponente zu vermeiden. Optional kann der Femureinschläger zur Korrektur der Femurkomponente an der Fossa positioniert werden.

Abb. 135

Abb. 136

Abb. 137

Treiben Sie die Femurkomponente auf den Knochen, bis sie nicht mehr als 1–2 mm hervorsteht; entfernen Sie anschliessend den Femurhalter. Verwenden Sie den Femureinschläger und einen Hammer, um die Femurkomponente, bis zum vollständigen Sitz auf dem Knochen aufzuschlagen. Platzieren Sie das Instrument in leicht posteriorer Position, um eine Flexionsposition der Femurkomponente zu vermeiden.

Verwenden Sie eine Kürette zum Entfernen sämtlichen extrudierten Knochenzements. Überprüfen Sie sorgfältig die Fossa und den posterioren Bereich auf Zementrückstände.

Verwenden Sie nur den Femureinschläger, um das Testfemur in die finale Position zu bringen. Anwendung von Gewalt auf den Femurhalter kann das Instrument beschädigen.

Setzen Sie das endgültige PS-Inlay mit der vorgesehenen Grösse und Dicke ein.

Das Inlay wird zuerst unter dem posterioren Rand eingehakt und anschliessend an dem anterioren Rand eingerastet.

Abb. 138

Optional

Falls erwünscht, können Testinlays auf dem endgültigen Tibiaplateau zur nochmaligen Überprüfung von Funktion und Stabilität des Knies mit der geplanten Dicke des Inlays verwendet werden.

Die Testinlays passen jeweils zu zwei Tibiagrössen. Verwenden Sie den Testinlay-Adapter für die entsprechenden grösseren Tibiagrössen, um einen stabilen Zustand zu erhalten.

Abb. 139

Das Bein sollte sich während des Aushärtens des Knochenzements in Streckung befinden.

Vermeiden Sie Überstreckung während des Aushärtens des Knochenzements. Überstreckung führt anterior zu hohem Druck, was Schiefstellung des Tibiaimplantats nach sich ziehen kann.

7. Anhang

7.2 Intramedulläre Tibiaausrichtung

Abb. 140

Verbinden Sie den Eminentia-Bügel (optional: Eminentia-Bügel rotierend) mit dem Intramedullärbügel. Positionieren Sie die Instrumente an der «Startposition».

Abb. 141

Abb. 142

Montieren Sie die TRS-Schnittlehre mit dem balanSys-Schraubenzieher an das TRS Proximal. Die TRS-Schnittlehre kann je nach Operationsseite und dem Verfahren nach links und nach rechts verschoben werden.

Setzen Sie den Intramedullärbügel auf das TRS Proximal. Drücken Sie den Verriegelungsmechanismus, um die beiden Teile aneinander zu befestigen.

Öffnen Sie den Markkanal mit dem balanSys Bohrer 8,5/11 mm.

Der Eintrittspunkt wird durch Analyse der Ganzbein-Aufnahme bestimmt. Im Allgemeinen befindet er sich medial zu der Eminentia intercondylaris.

Bohren Sie mit dem Bohrer vollständig bis zum Ende des Gewindes. Der Stufenaufbau des Bohrers vergrössert den Durchmesser des Lochs um 1,5 mm, um Druckverringerung im Kanal zu ermöglichen, wenn der Intramedullärstab eingesetzt wird.

Bemerkung

Falls sich das Eintrittsloch ausserhalb der anatomischen Achse befindet, wird der Intramedullärstab fehlgeleitet. Dies kann zu Winkelfehlstellung der Tibiakomponente führen.

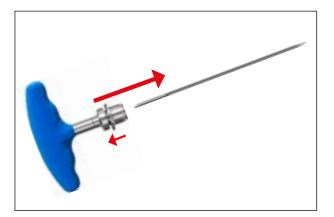


Abb. 143

Verbinden Sie den Griff mit dem Intramedullärstab.

Bemerkung

Ziehen Sie am Sicherungsring zum Verbinden und Lösen des Griffs.

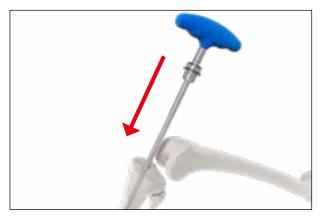


Abb. 144

Setzen Sie den Intramedullärstab langsam und vollständig in die Tibia ein, um die möglichst genaue Wiedergabe der anatomischen Achse zu gewährleisten.

Entfernen Sie den Griff.

Der Intramedullärstab sollte keinerlei Kontakt zu dem kortikalen Knochen am Eintrittspunkt haben, um eine falsche Führung zu vermeiden. Sollte dies dennoch der Fall sein, entfernen Sie den Intramedullärstab und erweitern das Eintrittsloch mit dem Bohrer.

Abb. 145

Schieben Sie die vormontierte Vorrichtung auf den Intramedullärstab.

Distale Ausrichtung des TRS auf den zweiten Zehen, proximal zum Übergang des medialen zu dem mittleren Drittel der Tuberositas tibiae.

Einschlagen des Intramedullärbügel.

Bemerkung

Die Nullposition der TRS-Schnittlehre steht im Winkel von 90° zu dem Intramedullärstab.

Abb. 146a

Die Skala der Resektionsebene muss «0» anzeigen.

Stellen Sie mithilfe des Gleitmechanismus die Längen des TRS ein, so dass sich der Sägeschlitz ungefähr auf dem Niveau des Tibiaplateaus befindet.

Für die proximal-distale Einstellung drücken Sie den unteren, für die anterior-posteriore Einstellung den oberen Hebel.

Optional

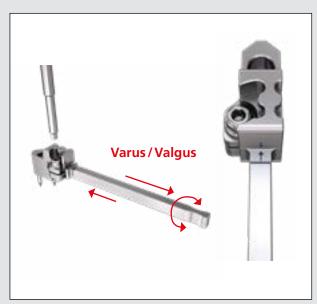


Abb. 146b

balanSys TRS Eminentia-Bügel rotierend

Der TRS Eminentia-Bügel rotierend kann für varische/ valgische Anpassungen mit intramedullärer Ausrichtung verwendet werden.

Der Winkel des TRS Eminentia-Bügels rotierend kann entsprechend der Anatomie eingestellt und mit dem balanSys Schraubendreher fixiert werden.

Wenn kein Winkel eingestellt werden soll (0°), muss der TRS Eminentia-Bügel rotierend arretiert werden, und die Markierungen auf der Oberseite müssen auf einer Linie liegen.

Abb. 147

Posteriore Neigung.

Verwenden Sie das Stellrad zur Einstellung der posterioren Neigung entsprechend der Anatomie (Tastblech parallel zu der am besten erhaltenen Tibiagelenkoberfläche).

Bemerkung

Die Autoren empfehlen eine posteriore Neigung von 7° für ein HKB-erhaltendes Implantat und von bis zu 5° für ein HKB-ersetzendes Implantat.

Abb. 148

Bestimmen Sie die ursprüngliche Gelenklinie auf dem Niveau der am besten erhaltenen Tibiagelenkoberfläche. Befestigen Sie zu diesem Zweck den Tibia-Höhentaster durch den Sägeschlitz der TRS-Schnittlehre, und verwenden Sie den Gleitmechanismus zur Bewegung der Schnittlehre in distaler oder proximaler Richtung. Der Tibia-Höhentaster muss die am besten erhaltene Tibiagelenkoberfläche berühren.

Befestigen Sie das TRS proximal mit mindestens zwei geraden Pins und einem schrägen Pin. Bohren Sie die Löcher mit dem 3,2 mm Bohrer vor.

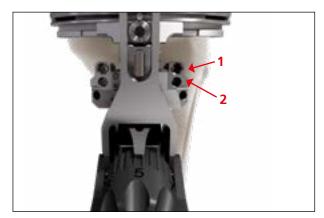


Abb. 149

Abb. 150

Abb. 151

Es gibt zwei Optionen zum Fixieren des TRS.

- 1. Proximale Löcher (gefast)
- 2. Distale Löcher

Grundsätzlich sollten die proximalen Löcher zum Fixieren verwendet werden, weil sich der Tibiaknochen proximal verbreitert. Die Schnittlehre kann anschliessend um bis zu 10 mm distal verschoben werden.

Für eine geplante Resektion von mehr als 10 mm sollten die distalen Löcher verwendet werden. Nach dem Einsetzen der Pins kann das TRS mit Schnittlehre anschliessend zu den proximalen Löchern neu positioniert werden. Dieses Vorgehen ermöglicht eine Resektion von 10–15 mm. Bitte beachten, dass zu der ablesbaren Skala 5 mm hinzugerechnet werden müssen.

Bohrer und Pins dürfen nur durch den anterioren kortikalen Knochen dringen und dürfen den posterioren kortikalen Knochen nicht perforieren, um Verletzungen an dorsalen Gefässen und Nerven zu vermeiden. Es ist empfehlenswert, bis hinter die anteriore Kortikalis zu bohren und den Pin mit einem Hammer einzuschlagen, bis er die posteriore Kortikalis berührt.

Die Stabilität des HKB muss berücksichtigt werden, insbesondere im Falle umfangreicherer Resektionen.

Entriegeln Sie nach dem Befestigen des TRS Distal den Intramedullärbügel vom TRS, und entfernen Sie den Intramedullärstab und den Intramedullärbügel.

Achten Sie dabei auf die Fixierungspins.

Stellen Sie die Resektionshöhe durch Bewegen der TRS-Schnittlehre 6–8 mm in distaler Richtung durch Drehen am Axialen Rad ein. Die Mindestresektionshöhe hängt von der Qualität des Knorpels in dem Bereich ab, in dem die Gelenklinie bestimmt wurde.

Überprüfen Sie vor der Resektion das eingestellte Resektionsniveau mit dem Tastblech.

Abb. 152

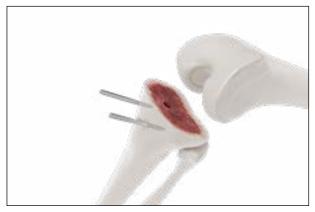


Abb. 153

Abb. 154

Resezieren Sie die Tibia mithilfe eines 1,27 mm Sägeblatts durch den Sägeschlitz.

Entfernen Sie die Instrumente. Für die Option einer späteren zusätzlichen Resektion sollte mindestens ein gerader Pin im Knochen verbleiben.

Bemerkung

Platzieren Sie Retraktoren zum Schutz der Bänder während der Tibiaresektion.

Bemerkung

Zum Reduzieren der Hitze und der Gefahr der Osteonekrose ist es empfehlenswert, die Sägeblätter während des Sägens zu kühlen.

Bestimmen Sie die Grösse der Tibiaprothese mit der Tibiagrössenlehre. Berücksichtigen Sie die Rotationsausrichtung, um die Beugungsebene des Knies wiederherzustellen.

Die Rotation der Tibiagrössenlehre wird normalerweise auf der Verbindung zwischen dem medialen und mittleren Drittel der Tuberositas tibiae zentriert.

Stellen Sie maximale Abdeckung der Resektionsfläche ohne Überhang der Tibiagrössenlehre bereit.

Abb. 155

BemerkungFalls ein Imp

Falls ein Implantat mit Rotationsplattform (RP-Implantat) geplant ist, muss darüber hinaus die Rotationsausrichtung des Tibiaimplantats berücksichtigt werden. Die Rotationsplattform ermöglicht eine Variabilität bei der Rotation von nicht mehr als ungefähr 5° Abweichung.



Abb. 156

Verwenden Sie den Peilstab zum Überprüfen der Achse der Schnittebene.

7. Anhang

7.3 Optionaler 2°-Nachschnitt

Falls die vorgenommene Tibia- oder Femurresektion korrigiert werden muss, kann ein optionaler 2° Nachschnitt durchgeführt werden.

Abb. 157

Abb. 158 Tibia

Abb. 159 Femur

Abb. 160 Tibia

Abb. 161 Femur

Setzen Sie die Auflage in den Korrekturschnittblock ein. Bringen Sie anschliessend den Tibiagrössenlehrenhalter an dem Korrekturschnittblock an und positionieren die Auflage auf der resezierten Tibia bzw. dem resezierten Femur.

Zur Korrektur eines Valgus muss der Auflageschlitz (in der Abbildung markiert) sich auf der lateralen Seite (Seite der umfangreicheren Knochenresektion) befinden.

Zur Korrektur eines Varus muss der Auflageschlitz (in der Abbildung markiert) sich auf der medialen Seite (Seite der umfangreicheren Knochenresektion) befinden.

Verwenden Sie den Peilstab zum Überprüfen der Achse der geplanten Korrekturschnittebene.

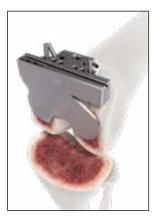


Abb. 163 Femur

Entfernen Sie den Tibiagrössenlehrenhalter, und befestigen Sie den Korrekturschnittblock in der vorgesehenen Position mit mindestens zwei geraden und einem schrägen Pin. Bohren Sie die Löcher mit dem 3,2 mm Bohrer vor.

Abb. 164 Tibia

Abb. 165 Femur

Bevor Sie die Resektion durch den Sägeschlitz ausführen, bewegen Sie die Auflage so weit wie möglich auf die Seite der umfangreicheren Knochenresektion, um Aufprallen auf das Sägeblatt zu vermeiden.

Resezieren Sie die Tibia bzw. das Femur mit einem 1,27 mm Sägeblatt durch den Sägeschlitz.

Entfernen Sie die Instrumente und alle Pins.

7. Anhang

7.4 Vorbereitung der 3-Stift-Patella

Abb. 166

Evertieren Sie die Patella.

Führen Sie mittels Elektrokaustik ringsum Denervierung des synovialen Rands der Patella durch. Entfernen Sie periphere Osteophyten, um die normale Form und Grösse der Patella wiederherzustellen. Achten Sie sorgfältig darauf, die patellaren Sehnenansätze nicht zu beschädigen.

Abb. 167

Ermitteln Sie die Patellagrösse mithilfe der Messlehre oder der Patella-Grössenlehre.

Abb. 168

Messen Sie die Dicke der Patella mit der Messlehre.

Nach der Resektion muss die Patella eine Mindestdicke von 12 mm aufweisen, um ausreichend Knochensubstanz zu erhalten. Sehen Sie in der nachstehenden Tabelle Dicke = Resektionshöhe für die balanSys 3-Stift FLACH-Patella.

Dia	3-Stift FLACH	3-Stift
26	8 mm	-
28	8mm	10,2 mm
31	8mm	11,4 mm
34	9 mm	12,3 mm
37	9mm	13,0 mm

Abb. 169

Abb. 170

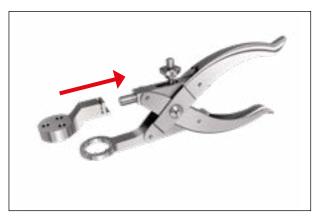


Abb. 171

Greifen Sie die Patella mittig mit der Patellazange. Stellen Sie die Resektionshöhe mithilfe der Höhenbegrenzung auf die ausgewählte Patellagrösseneinstellung ein.

Es ist wichtig, Schiefstellung des Patellaimplantats zu vermeiden. Unterziehen Sie die geplante Resektion einer nochmaligen Überprüfung mit dem Tastblech.

Bemerkung

Stellen Sie sicher, dass Sie die Patella Resektionszange flach für die Patella 3 Stift FLACH (gekennzeichnet mit den Grössen **26**–37) bzw. die Patella Resektionszange Standard für die Patella 3 Stift Standard (gekennzeichnet mit den Grössen **28**–37) verwenden.

Führen Sie die Patellaresektion durch die Sägelehre auf der lateralen Seite der Patellazange durch.

Befestigen Sie die balanSys Patella Bohrlehre an der Patella-Universalzange.

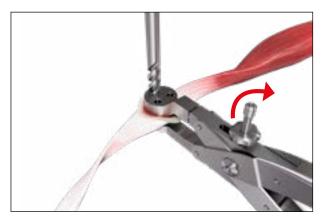


Abb. 172

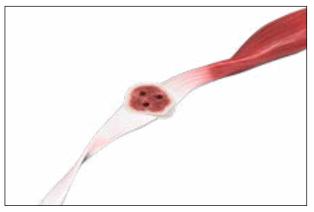


Abb. 173

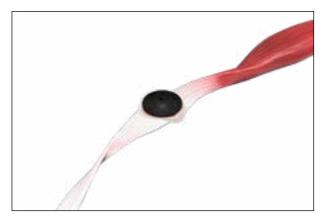


Abb. 174

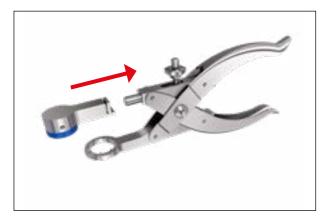
Positionieren Sie die Bohrlehre, um die endgültige Positionierung des Patellaimplantats in Bezug auf den vorgesehenen Gleitweg des femoralen Schilds zu ermitteln.

Befestigen Sie die Bohrlehre mit der Rändelmutter fest an der Patella.

Bohren Sie die drei Patella-Stiftlöcher mit dem 5,5 mm Bohrer.

Entfernen Sie die Bohrlehre wieder.

Bemerkung


Leichtes Medialisieren des Patellaimplantats kann die Patellaführung unterstützen.

Für die Implantation vorbereitete retropatellare Fläche.

Setzen Sie die Testpatella der vorgesehenen Grösse (FLACH oder Standard) ein.

Schrägen Sie die medialen und lateralen Ränder der Rückseite der Patella ab.

Überprüfen Sie die sich ergebende Dicke der Patella mit der Messlehre und die Gleitbewegung in dem femoropatellaren Gelenk in Bezug auf Zentrierung und Impingement.

Befestigen Sie die balanSys Patella Zementierhilfe an der Patella Universalzange.

Reinigen Sie die Osteotomiefläche gründlich.

die Patellakomponente auf.

Tragen Sie eine Schicht Zement auf den Knochen oder

Setzen Sie die zementierte balanSys Patella 3 Stift ein.

Abb. 175

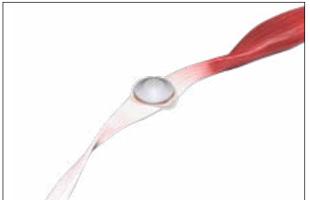
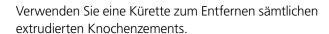



Abb. 176

Positionieren Sie die Patella Zementierhilfe, und fixieren Sie die Zementierhilfe kräftig durch Drehen der Rändelmutter im Uhrzeigersinn.

Entfernen Sie nach dem Aushärten des Zements die Patella-Zementierhilfe.

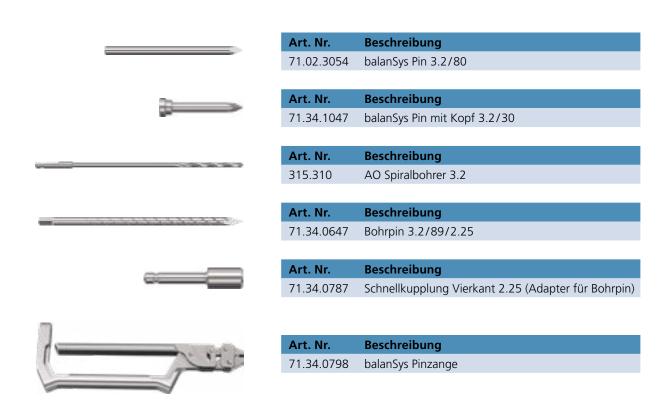

Nach Repositionierung der Gelenkkapsel führen Sie einen endgültigen Funktionstest durch und überprüfen, ob die Patella ausreichend zentriert läuft.

Abb. 177

7. Anhang

7.5 Pins und Schrauben

8. Implantate

8.1 Kombinationsdiagramme

balanSys Fixed-Bearing CR und UC

					Femur				
		XS	S	Α	В	С	D	E	F
	59/40	V	V						
Tibia/Inlay	62/42	V	V	V					
a/II	64/45		V	V	V				
Tibi	67/46			V	V				
	70/48			V	V	V			
	75/51				V	V	V		
	80/53					V	V	V	V
	85/55						V	V	V

balanSys PS

					Femur	%	,		
		XS	S	Α	В	С	D	E	F
	59/40	V	V						
ılay	62/42	V	V	V					
a/II	64/45		V	V	V				
Tibia/Inlay	67/46			V	V				
- 2-	70/48			V	V	V			
	75/51				V	V	V		
	80/53					V	V	V	V
-	85/55						V	V	V

balanSys Mobile-Bearing RP

8. Implantate

8.2 Artikelnummern der balanSys Implantate

balanSys Femurkomponenten für CR/UC/RP

balanSys Femur, zementiert

Mediolat.	Grösse
56 mm	XS links
58 mm	S links
60 mm	A links
64 mm	B links
68 mm	C links
72 mm	D links
76 mm	E links
80 mm	F links
56 mm	XS rechts
58 mm	S rechts
60 mm	A rechts
64 mm	B rechts
68 mm	C rechts
72 mm	D rechts
76 mm	E rechts
80 mm	F rechts
	56 mm 58 mm 60 mm 64 mm 72 mm 76 mm 80 mm 56 mm 58 mm 60 mm 64 mm 68 mm 72 mm 76 mm

Material: CoCrMo

balanSys Femur, unzementiert

Art. Nr.	Mediolat.	Grösse
73.15.3401TPS	56 mm	XS links
73.15.3701TPS	58 mm	S links
73.15.4001TPS	60 mm	A links
73.15.4301TPS	64 mm	B links
73.15.4601TPS	68 mm	C links
73.15.4901TPS	72 mm	D links
73.15.5201TPS	76 mm	E links
73.15.5501TPS	80 mm	F links
73.15.3402TPS	56 mm	XS rechts
73.15.3702TPS	58 mm	S rechts
73.15.4002TPS	60 mm	A rechts
73.15.4302TPS	64 mm	B rechts
73.15.4602TPS	68 mm	C rechts
73.15.4902TPS	72 mm	D rechts
73.15.5202TPS	76 mm	E rechts
73.15.5502TPS	80 mm	F rechts

 $\textbf{Material:} \ \mathsf{CoCrMo}, \ \mathsf{TiCP\text{-}beschichtet}$

balanSys Fixed-Bearing-Komponenten

balanSys CR PE-Inlay

Art. Nr.	Mediolat.	Grösse
74.30.5908	59 mm	8,0 mm
74.30.5910	59 mm	10,5 mm
74.30.5913	59 mm	13,0 mm
74.30.5915	59 mm	15,5 mm
74.30.6208	62 mm	8,0 mm
74.30.6210	62 mm	10,5 mm
74.30.6213	62 mm	13,0 mm
74.30.6215	62 mm	15,5 mm
74.30.6408	64 mm	8,0 mm
74.30.6410	64 mm	10,5 mm
74.30.6413	64 mm	13,0 mm
74.30.6415	64 mm	15,5 mm
74.30.6708	67 mm	8,0 mm
74.30.6710	67 mm	10,5 mm
74.30.6713	67 mm	13,0 mm
74.30.6715	67 mm	15,5 mm

Art. Nr.	Mediolat.	Grösse
74.30.7008	70 mm	8,0 mm
74.30.7010	70 mm	10,5 mm
74.30.7013	70 mm	13,0 mm
74.30.7015	70 mm	15,5 mm
74.30.7508	75 mm	8,0 mm
74.30.7510	75 mm	10,5 mm
74.30.7513	75 mm	13,0 mm
74.30.7515	75 mm	15,5 mm
72.34.0170	80 mm	8,0 mm
72.34.0171	80 mm	10,5 mm
72.34.0172	80 mm	13,0 mm
72.34.0173	80 mm	15,5 mm
72.34.0174	85 mm	8,0 mm
72.34.0175	85 mm	10,5 mm
72.34.0176	85 mm	13,0 mm
72.34.0177	85 mm	15,5 mm

Material: UHMWPE

balanSys vitamys Inlay CR

•	, ,	
Art. Nr.	Mediolat.	Grösse
72.34.1000	59 mm	8,0 mm
72.34.1001	59 mm	9,0 mm
72.34.1002	59 mm	10,5 mm
72.34.1003	59 mm	11,5 mm
72.34.1004	59 mm	13,0 mm
72.34.1005	59 mm	15,5 mm
72.34.1010	62 mm	8,0 mm
72.34.1011	62 mm	9,0 mm
72.34.1012	62 mm	10,5 mm
72.34.1013	62 mm	11,5 mm
72.34.1014	62 mm	13,0 mm
72.34.1015	62 mm	15,5 mm
72.34.1020	64 mm	8,0 mm
72.34.1021	64 mm	9,0 mm
72.34.1022	64 mm	10,5 mm
72.34.1023	64 mm	11,5 mm
72.34.1024	64 mm	13,0 mm
72.34.1025	64 mm	15,5 mm
72.34.1030	67 mm	8,0 mm
72.34.1031	67 mm	9,0 mm
72.34.1032	67 mm	10,5 mm
72.34.1033	67 mm	11,5 mm
72.34.1034	67 mm	13,0 mm
72.34.1035	67 mm	15,5 mm

Art. Nr.	Mediolat.	Grösse
72.34.1040	70 mm	8,0 mm
72.34.1041	70 mm	9,0 mm
72.34.1042	70 mm	10,5 mm
72.34.1043	70 mm	11,5 mm
72.34.1044	70 mm	13,0 mm
72.34.1045	70 mm	15,5 mm
72.34.1050	75 mm	8,0 mm
72.34.1051	75 mm	9,0 mm
72.34.1052	75 mm	10,5 mm
72.34.1053	75 mm	11,5 mm
72.34.1054	75 mm	13,0 mm
72.34.1055	75 mm	15,5 mm
72.34.1060	80 mm	8,0 mm
72.34.1061	80 mm	9,0 mm
72.34.1062	80 mm	10,5 mm
72.34.1063	80 mm	11,5 mm
72.34.1064	80 mm	13,0 mm
72.34.1065	80 mm	15,5 mm
72.34.1070	85 mm	8,0 mm
72.34.1071	85 mm	9,0 mm
72.34.1072	85 mm	10,5 mm
72.34.1073	85 mm	11,5 mm
72.34.1074	85 mm	13,0 mm
72.34.1075	85 mm	15,5 mm

Material: VEPE

balanSys PE-Inlay UC

Art. Nr.	Mediolat.	Grösse
77.30.5908	59 mm	8,0 mm
77.30.5910	59 mm	10,5 mm
77.30.5913	59 mm	13,0 mm
77.30.5915	59 mm	15,5 mm
77.30.5918	59 mm	18,0 mm
77.30.6208	62 mm	8,0 mm
77.30.6210	62 mm	10,5 mm
77.30.6213	62 mm	13,0 mm
77.30.6215	62 mm	15,5 mm
77.30.6218	62 mm	18,0 mm
77.30.6408	64 mm	8,0 mm
77.30.6410	64 mm	10,5 mm
77.30.6413	64 mm	13,0 mm
77.30.6415	64 mm	15,5 mm
77.30.6418	64 mm	18,0 mm
77.30.6708	67 mm	8,0 mm
77.30.6710	67 mm	10,5 mm
77.30.6713	67 mm	13,0 mm
77.30.6715	67 mm	15,5 mm
77.30.6718	67 mm	18,0 mm

Art. Nr.	Mediolat.	Grösse
77.30.7008	70 mm	8,0 mm
77.30.7010	70 mm	10,5 mm
77.30.7013	70 mm	13,0 mm
77.30.7015	70 mm	15,5 mm
77.30.7018	70 mm	18,0 mm
77.30.7508	75 mm	8,0 mm
77.30.7510	75 mm	10,5 mm
77.30.7513	75 mm	13,0 mm
77.30.7515	75 mm	15,5 mm
77.30.7518	75 mm	18,0 mm
72.34.0182	80 mm	8,0 mm
72.34.0183	80 mm	10,5 mm
72.34.0184	80 mm	13,0 mm
72.34.0185	80 mm	15,5 mm
72.34.0186	80 mm	18,0 mm
72.34.0188	85 mm	8,0 mm
72.34.0189	85 mm	10,5 mm
72.34.0190	85 mm	13,0 mm
72.34.0191	85 mm	15,5 mm
72.34.0192	85 mm	18,0 mm

Material: UHMWPE

balanSys vitamys Inlay UC

Art. Nr.	Mediolat.	Grösse
72.34.1100	59 mm	8,0 mm
72.34.1101	59 mm	9,0 mm
72.34.1102	59 mm	10,5 mm
72.34.1103	59 mm	11,5 mm
72.34.1104	59 mm	13,0 mm
72.34.1105	59 mm	15,5 mm
72.34.1106	59 mm	18,0 mm
72.34.1110	62 mm	8,0 mm
72.34.1111	62 mm	9,0 mm
72.34.1112	62 mm	10,5 mm
72.34.1113	62 mm	11,5 mm
72.34.1114	62 mm	13,0 mm
72.34.1115	62 mm	15,5 mm
72.34.1116	62 mm	18,0 mm
72.34.1120	64 mm	8,0 mm
72.34.1121	64 mm	9,0 mm
72.34.1122	64 mm	10,5 mm
72.34.1123	64 mm	11,5 mm
72.34.1124	64 mm	13,0 mm
72.34.1125	64 mm	15,5 mm
72.34.1126	64 mm	18,0 mm
72.34.1130	67 mm	8,0 mm
72.34.1131	67 mm	9,0 mm
72.34.1132	67 mm	10,5 mm
72.34.1133	67 mm	11,5 mm
72.34.1134	67 mm	13,0 mm
72.34.1135	67 mm	15,5 mm
72.34.1136	67 mm	18,0 mm

Art. Nr.	Mediolat.	Grösse
72.34.1140	70 mm	8,0 mm
72.34.1141	70 mm	9,0 mm
72.34.1142	70 mm	10,5 mm
72.34.1143	70 mm	11,5 mm
72.34.1144	70 mm	13,0 mm
72.34.1145	70 mm	15,5 mm
72.34.1146	70 mm	18,0 mm
72.34.1150	75 mm	8,0 mm
72.34.1151	75 mm	9,0 mm
72.34.1152	75 mm	10,5 mm
72.34.1153	75 mm	11,5 mm
72.34.1154	75 mm	13,0 mm
72.34.1155	75 mm	15,5 mm
72.34.1156	75 mm	18,0 mm
72.34.1160	80 mm	8,0 mm
72.34.1161	80 mm	9,0 mm
72.34.1162	80 mm	10,5 mm
72.34.1163	80 mm	11,5 mm
72.34.1164	80 mm	13,0 mm
72.34.1165	80 mm	15,5 mm
72.34.1166	80 mm	18,0 mm
72.34.1170	85 mm	8,0 mm
72.34.1171	85 mm	9,0 mm
72.34.1172	85 mm	10,5 mm
72.34.1173	85 mm	11,5 mm
72.34.1174	85 mm	13,0 mm
72.34.1175	85 mm	15,5 mm
72.34.1176	85 mm	18,0 mm

Material: VEPE

balanSys PS Tibiaplateau, zementiert

Art. Nr.	Mediolateral
79.15.0400	59 mm
79.15.0401	62 mm
79.15.0056	64 mm
79.15.0402	67 mm
79.15.0057	70 mm
79.15.0058	75 mm
79.15.0059	80 mm
79.15.0060	85 mm

Material: CoCrMo

balanSys Mobile Bearing RP Komponenten

balanSys PE-Inlay RP

Dalaiisys i E iiii	ay iii				
Art. Nr.	Femur	Grösse	Art. Nr.	Femur	Grösse
72.34.0200	XS	8,0 mm	78.30.7008	C	8,0 mm
72.34.0201	XS	10,5 mm	78.30.7010	С	10,5 mm
72.34.0202	XS	13,0 mm	78.30.7013	C	13,0 mm
72.34.0203	XS	15,5 mm	78.30.7015	С	15,5 mm
72.34.0206	S	8,0 mm	78.30.7408	D	8,0 mm
72.34.0207	S	10,5 mm	78.30.7410	D	10,5 mm
72.34.0208	S	13,0 mm	78.30.7413	D	13,0 mm
72.34.0209	S	15,5 mm	78.30.7415	D	15,5 mm
78.30.6208	А	8,0 mm	78.30.7808	Е	8,0 mm
78.30.6210	А	10,5 mm	78.30.7810	Е	10,5 mm
78.30.6213	А	13,0 mm	78.30.7813	Е	13,0 mm
78.30.6215	А	15,5 mm	78.30.7815	Е	15,5 mm
78.30.6608	В	8,0 mm	72.34.0242	F	8,0 mm
78.30.6610	В	10,5 mm	72.34.0243	F	10,5 mm
78.30.6613	В	13,0 mm	72.34.0244	F	13,0 mm
78.30.6615	В	15,5 mm	72.34.0245	F	15,5 mm

Material: UHMWPE, FeCrNiMoMn (Kontrastkugeln, optional)

Art. Nr.	Femur	Grösse
72.34.1200	XS	8,0 mm
72.34.1201	XS	9,0 mm
72.34.1202	XS	10,5 mm
72.34.1203	XS	11,5 mm
72.34.1204	XS	13,0 mm
72.34.1205	XS	15,5 mm
72.34.1210	S	8,0 mm
72.34.1211	S	9,0 mm
72.34.1212	S	10,5 mm
72.34.1213	S	11,5 mm
72.34.1214	S	13,0 mm
72.34.1215	S	15,5 mm
72.34.1220	А	8,0 mm
72.34.1221	А	9,0 mm
72.34.1222	А	10,5 mm
72.34.1223	А	11,5 mm
72.34.1224	А	13,0 mm
72.34.1225	А	15,5 mm
72.34.1230	В	8,0 mm
72.34.1231	В	9,0 mm
72.34.1232	В	10,5 mm
72.34.1233	В	11,5 mm
72.34.1234	В	13,0 mm
72.34.1235	В	15,5 mm

Art. Nr.	Femur	Grösse
72.34.1240	C	8,0 mm
72.34.1241	C	9,0 mm
72.34.1242	C	10,5 mm
72.34.1243	C	11,5 mm
72.34.1244	С	13,0 mm
72.34.1245	С	15,5 mm
72.34.1250	D	8,0 mm
72.34.1251	D	9,0 mm
72.34.1252	D	10,5 mm
72.34.1253	D	11,5 mm
72.34.1254	D	13,0 mm
72.34.1255	D	15,5 mm
72.34.1260	Е	8,0 mm
72.34.1261	Е	9,0 mm
72.34.1262	Е	10,5 mm
72.34.1263	Е	11,5 mm
72.34.1264	Е	13,0 mm
72.34.1265	Е	15,5 mm
72.34.1270	F	8,0 mm
72.34.1271	F	9,0 mm
72.34.1272	F	10,5 mm
72.34.1273	F	11,5 mm
72.34.1274	F	13,0 mm
72.34.1275	F	15,5 mm

Material: VEPE

balanSys RP Tibiaplateau, zementiert

Art. Nr.	Mediolateral
72.34.0059	59 mm
72.34.0060	62 mm
72.34.0061	64 mm
72.34.0062	67 mm
72.34.0063	70 mm
72.34.0064	75 mm
72.34.0065	80 mm
72.34.0066	85 mm

Material: CoCrMo

balanSys PS-Komponenten

balanSys PS-Femur, zementiert

Art. Nr.	Mediolat.	Grösse
79.15.0999	56 mm	XS rechts
79.15.1000	58 mm	S rechts
79.15.0001	60 mm	A rechts
79.15.0002	64 mm	B rechts
79.15.0003	68 mm	C rechts
79.15.0004	72 mm	D rechts
79.15.0005	76 mm	E rechts
79.15.1006	80 mm	F rechts
79.15.1009	56 mm	XS links
79.15.1010	58 mm	S links
79.15.0011	60 mm	A links
79.15.0012	64 mm	B links
79.15.0013	68 mm	C links
79.15.0014	72 mm	D links
79.15.0015	76 mm	E links
79.15.1016	80 mm	F links

Material: CoCrMo

balanSys PE-Inlay PS

Art. Nr.	Mediolat.	Grösse
79.30.9986	59 mm	8,0 mm
79.30.9987	59 mm	10,5 mm
79.30.9988	59 mm	13,0 mm
79.30.9989	59 mm	15,5 mm
79.30.9990	59 mm	18,0 mm
79.30.9991	59 mm	20,5 mm
79.30.9993	62 mm	8,0 mm
79.30.9994	62 mm	10,5 mm
79.30.9995	62 mm	13,0 mm
79.30.9996	62 mm	15,5 mm
79.30.9997	62 mm	18,0 mm
79.30.9998	62 mm	20,5 mm
79.30.0200	64 mm	8,0 mm
79.30.0201	64 mm	10,5 mm
79.30.0202	64 mm	13,0 mm
79.30.0203	64 mm	15,5 mm
79.30.0204	64 mm	18,0 mm
79.30.0205	64 mm	20,5 mm
79.30.0210	67 mm	8,0 mm
79.30.0211	67 mm	10,5 mm
79.30.0212	67 mm	13,0 mm
79.30.0213	67 mm	15,5 mm
79.30.0214	67 mm	18,0 mm
79.30.0215	67 mm	20,5 mm

Art. Nr.	Mediolat.	Grösse
79.30.0010	70 mm	8,0 mm
79.30.0011	70 mm	10,5 mm
79.30.0012	70 mm	13,0 mm
79.30.0013	70 mm	15,5 mm
79.30.0014	70 mm	18,0 mm
79.30.0015	70 mm	20,5 mm
79.30.0020	75 mm	8,0 mm
79.30.0021	75 mm	10,5 mm
79.30.0022	75 mm	13,0 mm
79.30.0023	75 mm	15,5 mm
79.30.0024	75 mm	18,0 mm
79.30.0025	75 mm	20,5 mm
72.34.0255	80 mm	8,0 mm
72.34.0256	80 mm	10,5 mm
72.34.0257	80 mm	13,0 mm
72.34.0258	80 mm	15,5 mm
72.34.0259	80 mm	18,0 mm
72.34.0260	80 mm	20,5 mm
72.34.0262	85 mm	8,0 mm
72.34.0263	85 mm	10,5 mm
72.34.0264	85 mm	13,0 mm
72.34.0265	85 mm	15,5 mm
72.34.0266	85 mm	18,0 mm
72.34.0267	85 mm	20,5 mm

Material: UHMWPE

balanSys vitamys Inlay PS

4	
-	
	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	VALUE I AND SE

Art. Nr.	Mediolat.	Grösse
72.34.1300	59 mm	8.0 mm
72.34.1301	59 mm	9.0 mm
72.34.1302	59 mm	10.5 mm
72.34.1303	59 mm	11.5 mm
72.34.1304	59 mm	13.0 mm
72.34.1305	59 mm	15.5 mm
72.34.1306	59 mm	18.0 mm
72.34.1307*	59 mm	20.5 mm
72.34.1310	62 mm	8.0 mm
72.34.1311	62 mm	9.0 mm
72.34.1312	62 mm	10.5 mm
72.34.1313	62 mm	11.5 mm
72.34.1314	62 mm	13.0 mm
72.34.1315	62 mm	15.5 mm
72.34.1316	62 mm	18.0 mm
72.34.1317*	62 mm	20.5 mm
72.34.1320	64 mm	8.0 mm
72.34.1321	64 mm	9.0 mm
72.34.1322	64 mm	10.5 mm
72.34.1323	64 mm	11.5 mm
72.34.1324	64 mm	13.0 mm
72.34.1325	64 mm	15.5 mm
72.34.1326	64 mm	18.0 mm
72.34.1327*	64 mm	20.5 mm
72.34.1330	67 mm	8.0 mm
72.34.1331	67 mm	9.0 mm
72.34.1332	67 mm	10.5 mm
72.34.1333	67 mm	11.5 mm
72.34.1334	67 mm	13.0 mm
72.34.1335	67 mm	15.5 mm
72.34.1336	67 mm	18.0 mm
72.34.1337*	67 mm	20.5 mm

Art. Nr.	Mediolat.	Grösse
72.34.1340	70 mm	8.0 mm
72.34.1341	70 mm	9.0 mm
72.34.1342	70 mm	10.5 mm
72.34.1343	70 mm	11.5 mm
72.34.1344	70 mm	13.0 mm
72.34.1345	70 mm	15.5 mm
72.34.1346	70 mm	18.0 mm
72.34.1347*	70 mm	20.5 mm
72.34.1350	75 mm	8.0 mm
72.34.1351	75 mm	9.0 mm
72.34.1352	75 mm	10.5 mm
72.34.1353	75 mm	11.5 mm
72.34.1354	75 mm	13.0 mm
72.34.1355	75 mm	15.5 mm
72.34.1356	75 mm	18.0 mm
72.34.1357*	75 mm	20.5 mm
72.34.1360	80 mm	8.0 mm
72.34.1361	80 mm	9.0 mm
72.34.1362	80 mm	10.5 mm
72.34.1363	80 mm	11.5 mm
72.34.1364	80 mm	13.0 mm
72.34.1365	80 mm	15.5 mm
72.34.1366	80 mm	18.0 mm
72.34.1367*	80 mm	20.5 mm
72.34.1370	85 mm	8.0 mm
72.34.1371	85 mm	9.0 mm
72.34.1372	85 mm	10.5 mm
72.34.1373	85 mm	11.5 mm
72.34.1374	85 mm	13.0 mm
72.34.1375	85 mm	15.5 mm
72.34.1376	85 mm	18.0 mm
72.34.1377*	85 mm	20.5 mm

Material: VEPE *auf Anfrage

balanSys TiNbN-Komponenten

balanSys Femur TiNbN, zementiert

Art. Nr.	Mediolat.	Grösse
72.23.3401	56 mm	XS links
72.23.3701	58 mm	S links
72.23.4001	60 mm	A links
72.23.4301	64 mm	B links
72.23.4601	68 mm	C links
72.23.4901	72 mm	D links
72.23.5201	76 mm	E links
72.23.5501	80 mm	F links
	NA T'NILNI D	1.5 1.7

Material: CoCrMo, TiNbN-Beschichtung

Art. Nr.	Mediolat.	Grösse
72.23.3402	56 mm	XS rechts
72.23.3702	58 mm	S rechts
72.23.4002	60 mm	A rechts
72.23.4302	64 mm	B rechts
72.23.4602	68 mm	C rechts
72.23.4902	72 mm	D rechts
72.23.5202	76 mm	E rechts
72.23.5502	80 mm	F rechts

balanSys PS Tibiaplateau TiNbN Fix, zementiert

Art. Nr.	Mediolateral
79.23.0400	59 mm
79.23.0401	62 mm
79.23.0056	64 mm
79.23.0402	67 mm

Material: CoCrMo, TiNbN-Beschichtung

Art. Nr.	Mediolateral
79.23.0057	70 mm
79.23.0058	75 mm
79.23.0059	80 mm
79.23.0060	85 mm

balanSys PS-Femur TiNbN, zementiert

Art. Nr.	Mediolat.	Grösse
79.23.1009	56 mm	XS links
79.23.1010	58 mm	S links
79.23.0011	60 mm	A links
79.23.0012	64 mm	B links
79.23.0013	68 mm	C links
79.23.0014	72 mm	D links
79.23.0015	76 mm	E links
79.23.1016	80 mm	F links

Material: CoCrMo, TiNbN-Beschichtung

Art. Nr.	Mediolat.	Grösse
79.23.0999	56 mm	XS rechts
79.23.1000	58 mm	S rechts
79.23.0001	60 mm	A rechts
79.23.0002	64 mm	B rechts
79.23.0003	68 mm	C rechts
79.23.0004	72 mm	D rechts
79.23.0005	76 mm	E rechts
79.23.1006	80 mm	F rechts

balanSys 3-Stift-Patellakomponenten FLACH

Art. Nr.	Durchmesser Ø	
72.34.0049	26 mm	
72.34.0050	28mm	
72.34.0051	31 mm	
72.34.0052	34 mm	
72.34.0053	37 mm	

Material: UHMWPE, FeCrNiMoMn (Kontrastkugeln)

balanSys 3-Stift-Patellakomponenten

Art. Nr.	Durchmesser Ø
72.30.0128	28 mm
72.30.0131	31 mm
72.30.0134	34 mm
72.30.0137	37 mm

Material: UHMWPE, FeCrNiMoMn (Kontrastkugeln)

Nicht alle Produkte sind in allen Ländern erhältlich.

8. Implantate

8.3 Sterile Doppel- und Dreifachbeutelverpackung

Anleitung für Doppelbeutel-/Doppelblisterverpackung:

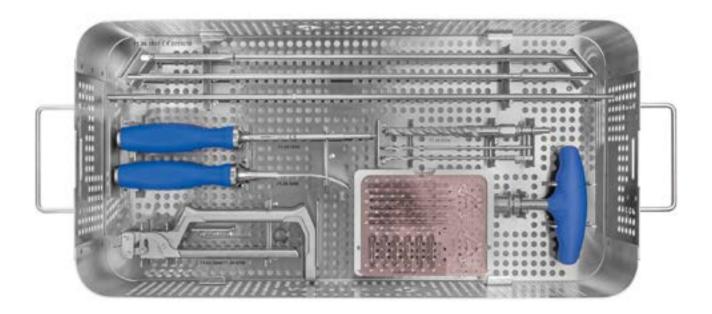
Diese Verpackung besteht aus einem doppelten Sterilbarrieresystem.

- 1) Die äussere Sterilbarriere (1. Schicht) muss von unsterilem OP-Personal geöffnet werden.
- 2) Die innere Sterilbarriere muss unter Verwendung einer aseptischen Technik dem sterilen OP-Personal präsentiert werden.
- 3) Die innere Sterilbarriere (2. Schicht) muss von sterilem OP-Personal entnommen werden.
- 4) Die innere Sterilbarriere (2. Schicht) muss von sterilem OP-Personal geöffnet werden, und das Implantat kann entnommen werden.

Hinweise betreffend die Dreifachbeutelverpackung:

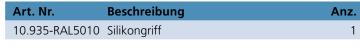
Diese Verpackung besteht aus einem doppelten Sterilbarrieresystem, das in einen unsterilen Schutzbeutel verpackt ist.

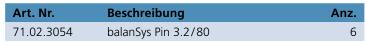
- 1) Der unsterile Schutzbeutel (1. Schicht) muss von unsterilem OP-Personal geöffnet werden.
- 2) Die äussere Sterilbarriere (2. Schicht) muss von unsterilem OP-Personal aus dem Schutzbeutel entnommen werden.
- 3) Die äussere Sterilbarriere (2. Schicht) muss von unsterilem OP-Personal geöffnet werden, und die innere Sterilbarriere muss unter Verwendung einer aseptischen Technik dem sterilen OP-Personal dargeboten werden.
- 4) Die innere Sterilbarriere (3. Schicht) muss von sterilem OP-Personal entnommen werden.
- 5) Die innere Sterilbarriere (3. Schicht) muss von sterilem OP-Personal geöffnet werden, und das Implantat kann entnommen werden.


9. Instrumente

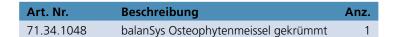
Basis Instrumente leggera Basis Set 71.34.9193A leggera Tibia Set 71.34.9194A	93 97
Operationstechnik	
leggera Femur Set Combination 71.34.9200A	100
Test Instrumente leggera Testset CR/UC 71.34.9196A leggera Testset PS 71.34.9197A leggera Testset CR/UC Add. Sizes 71.34.9198A	102 104 107
leggera Testset PS Add. Sizes 71.34.9199A balanSys Testset RP 71.34.9060A	108 109
Patella Instrumente balanSys Patella 3 Stift flach 71.34.0080A	113
balanSys Patella 3 Stift standard 71.34.0081A	113
Röntgenschablonen	115

Nicht alle Produkte sind in allen Ländern erhältlich.


leggera Basis Set 71.34.9193A


Kein Bild / 71.34.1056 leggera Set Deckel

71.34.1057 leggera Basis Set Sieb



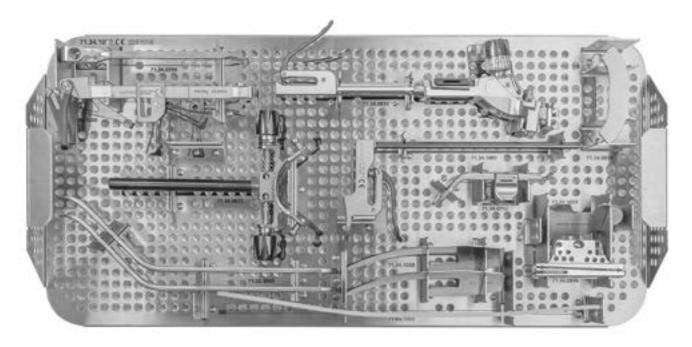
Art. Nr.	Beschreibung	Anz.
71.34.1049	balanSys Schraubendreher	1

Art. Nr.	Beschreibung	Anz.
71 34 0793	halanSvs Intramedullärstah	1

Art. Nr.	Beschreibung	Anz.
71 34 1008	halanSvs Richtstah Kurz	1

Art. Nr.	Beschreibung	Anz.
71.34.1009	balanSys Richtstab Lang	1

Art. Nr.	Beschreibung	Anz.
71.34.1055	balanSys Adapter Testeinsatz	1

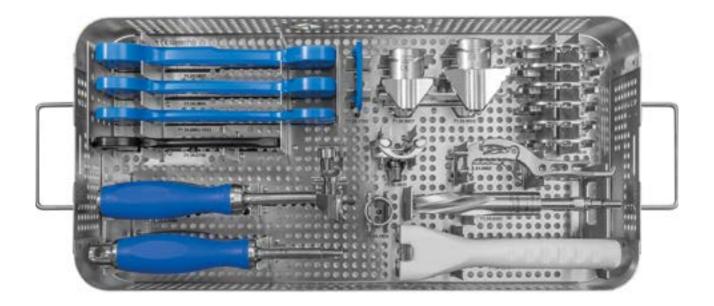


leggera Basis Set 71.34.9193A

71.34.1058 leggera Basis Set Siebeinsatz

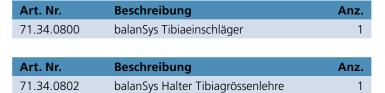
Art. Nr.	Beschreibung	Anz.
71.02.1005	balanSys Trs. Gummiband 3x25x300	1
Art. Nr.	Beschreibung	Anz.
71.34.1050	balanSys Tastblech	2
Art. Nr.	Beschreibung	Anz.
71.34.0792	balanSys Tibia-Höhentaster	1
Art. Nr.	Beschreibung	Anz.
71.02.3005	balanSys Knochenhebel	2
Art. Nr.	Beschreibung	Anz.
Art. Nr. 71.34.0833	Beschreibung balanSys TRS Proximal	Anz. 1
	•	
	•	
71.34.0833	balanSys TRS Proximal	1
71.34.0833 Art. Nr.	balanSys TRS Proximal Beschreibung	Anz.
71.34.0833 Art. Nr.	balanSys TRS Proximal Beschreibung	Anz.
71.34.0833 Art. Nr. 71.34.1001	balanSys TRS Proximal Beschreibung balanSys TRS Distal	1 Anz.
71.34.0833 Art. Nr. 71.34.1001 Art. Nr.	balanSys TRS Proximal Beschreibung balanSys TRS Distal Beschreibung	1 Anz. 1 Anz.
71.34.0833 Art. Nr. 71.34.1001 Art. Nr.	balanSys TRS Proximal Beschreibung balanSys TRS Distal Beschreibung	1 Anz. 1 Anz.

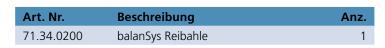
Art. Nr.	Beschreibung	Anz.
71.34.0835	balanSys Halter Fussgelenk	1
Art. Nr.	Beschreibung	Anz.
71.34.0834	balanSys TRS Schnittlehre	1
Art. Nr.	Beschreibung	Anz.
71.34.0999	balanSys Eminentia-Bügel	1
Art. Nr.	Beschreibung	Anz.
71.34.1000	balanSys TRS Intramedullärbügel	1



Optionale Instrumente

Optionale msu	uniente	
Art. Nr.	Beschreibung	Anz.
71.34.1054	balanSys Auflage Korrekturschnittblock	1
Art. Nr.	Beschreibung	Anz.
71.34.0836	balanSys Korrekturschnittblock	1
Art. Nr.	Beschreibung	Anz.
71.34.1077	balanSys Eminentia-Bügel rotierend	1


leggera Tibia Set 71.34.9194A


Kein Bild / 71.34.1056 leggera Set Deckel

71.34.1059 leggera Tibia Set Sieb

Art. Nr.	Beschreibung	Anz.
71.34.0819	balanSys Tibiagrössenlehre 64	1
71.34.0820	balanSys Tibiagrössenlehre 67	1
71.34.0821	balanSys Tibiagrössenlehre 70	1
71.34.0822	balanSys Tibiagrössenlehre 75	1
71.34.0823	balanSys Tibiagrössenlehre 80	1
71.34.0824	balanSys Tibiagrössenlehre 85	1

Art. Nr.	Beschreibung	Anz.
71.34.0825	balanSys Meisselzentrierlehre	1

Art. Nr.	Beschreibung	Anz.
71.34.0826	balanSys Aufsatz Fräsführung	1

Art. Nr.	Beschreibung	Anz.
71.34.0827	balanSys Finnenmeissel 59–70	1
71.34.0828	balanSvs Finnenmeissel 59–85	1

Art. Nr.	Beschreibung	Anz.
71.34.0829	balanSys Meisselgriff	1

Art. Nr.	Beschreibung	Anz.
71.34.1052	balanSys Setzinstrument Tibiaplateau	1

^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.

Art. Nr.	Beschreibung	Anz.
71.34.0795	balanSys Spacer Shift Platte +5	1

Art. Nr.	Beschreibung	Anz.
71.34.0796	balanSys Spacerblock Femur	1

Optionale Instrumente

Art. Nr.	Beschreibung	Anz.
71.34.1053	balanSys Spacerblock Tibia 8/10.5	1

Art. Nr.	Beschreibung	Anz.
71.34.0886	balanSys Setzinstrument Tibiaplateau RP	1

leggera Femur Set Combination 71.34.9200A

Kein Bild / 71.34.1056 leggera Set Deckel

71.34.1061 leggera Femur Set Combination Sieb 71.34.1062 leggera Femur Set Combi. Siebeinsatz

Art. Nr.	Beschreibung	Anz.
71.34.0830	balanSys Winkellehre	1

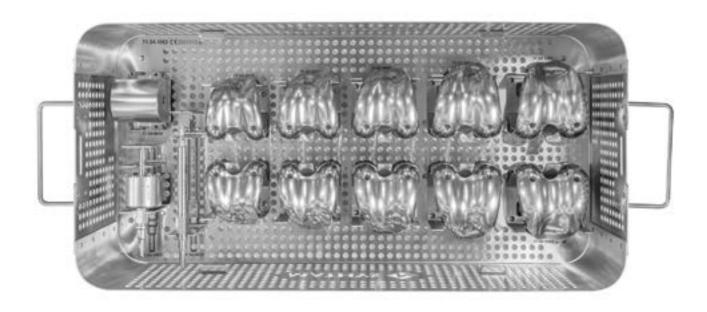
Art. Nr.	Beschreibung	Anz.
71.34.0804	balanSys Schnittblock Distal	1

Art. Nr.	Beschreibung	Anz.
71.34.0788	balanSys Femur Extractor	1

Art. Nr.	Beschreibung	Anz.
71.34.1014	balanSys Femurhalter	1

Art. Nr.	Beschreibung	Anz.
71.34.0799	balanSys Femureinschläger	1

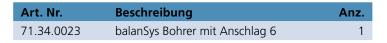
Art. Nr.	Beschreibung	Anz.
71.34.0143	balanSys Femurtaster 8G	1


Art. Nr.	Beschreibung	Anz.
71.34.0606	balanSys Bohrlehre 4in1 Schnittblock 8G	1

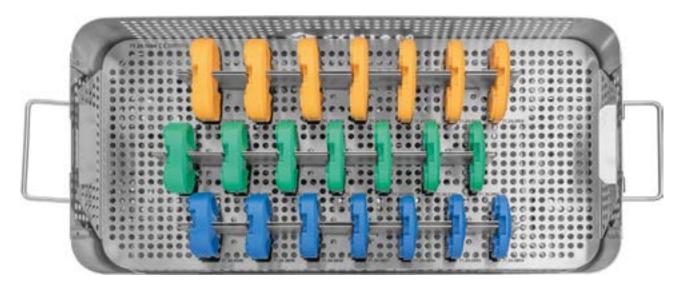
Art. Nr.	Beschreibung	Anz.
71.02.3018	balanSys Bänderspanner	1

leggera Testset CR/UC 71.34.9196A

Kein Bild / 71.34.1056 leggera Set Deckel



71.34.1063 leggera Testset CR/UC Sieb

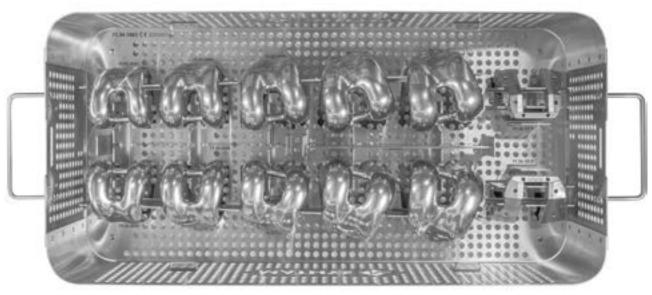

Art. Nr.	Beschreibung	Anz.
71.34.0840	balanSys Trochleafräsführung	1

Art. Nr.	Beschreibung	Anz.
71.02.4001	balanSys Testfemur A links	1
71.02.4002	balanSys Testfemur A rechts	1
71.02.4301	balanSys Testfemur B links	1
71.02.4302	balanSys Testfemur B rechts	1
71.02.4601	balanSys Testfemur C links	1
71.02.4602	balanSys Testfemur C rechts	1
71.02.4901	balanSys Testfemur D links	1
71.02.4902	balanSys Testfemur D rechts	1
71.02.5201	balanSys Testfemur E links	1
71.02.5202	balanSys Testfemur E rechts	1

Art. Nr.	Beschreibung	Anz.
71.02.3023	balanSys Trochleafräse	1

leggera Testset CR/UC 71.34.9196A

71.34.1064 leggera Testset CR/UC Siebeinsatz

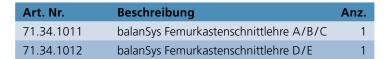


Art. Nr.	Beschreibung	Anz.
71.34.0894	balanSys CR/UC Testeinsatz 64–67/8	1
71.34.0895*	balanSys CR/UC Testeinsatz 64–67/9	1
71.34.0896	balanSys CR/UC Testeinsatz 64–67/10.5	1
71.34.0897*	balanSys CR/UC Testeinsatz 64–67/11.5	1
71.34.0898	balanSys CR/UC Testeinsatz 64–67/13	1
71.34.0899	balanSys CR/UC Testeinsatz 64–67/15.5	1
71.34.0900	balanSys CR/UC Testeinsatz 64–67/18	1
71.34.0901	balanSys CR/UC Testeinsatz 70–75/8	1
71.34.0902*	balanSys CR/UC Testeinsatz 70–75/9	1
71.34.0903	balanSys CR/UC Testeinsatz 70–75/10.5	1
71.34.0904*	balanSys CR/UC Testeinsatz 70–75/11.5	1
71.34.0905	balanSys CR/UC Testeinsatz 70–75/13	1
71.34.0906	balanSys CR/UC Testeinsatz 70–75/15.5	1
71.34.0907	balanSys CR/UC Testeinsatz 70–75/18	1
71.34.0908	balanSys CR/UC Testeinsatz 80–85/8	1
71.34.0909*	balanSys CR/UC Testeinsatz 80–85/9	1
71.34.0910	balanSys CR/UC Testeinsatz 80–85/10.5	1
71.34.0911*	balanSys CR/UC Testeinsatz 80–85/11.5	1
71.34.0912	balanSys CR/UC Testeinsatz 80–85/13	1
71.34.0913	balanSys CR/UC Testeinsatz 80–85/15.5	1
71.34.0914	balanSys CR/UC Testeinsatz 80–85/18	1

^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.

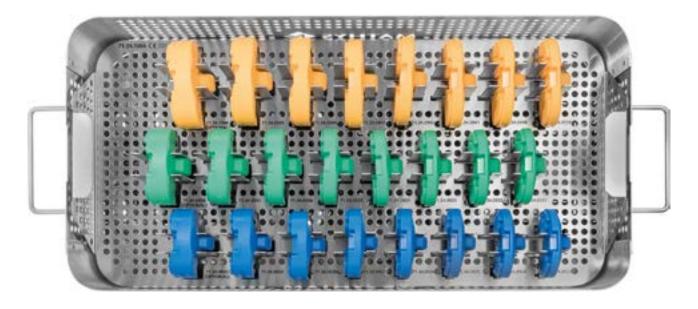
leggera Testset PS 71.34.9197A

Kein Bild / 71.34.1056 leggera Set Deckel



71.34.1063 leggera Testset CR/UC Sieb

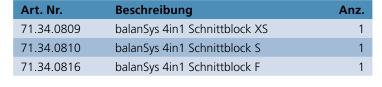
Art. Nr.	Beschreibung	Anz.
79.02.0040	balanSys PS Testfemur A rechts	1
79.02.0041	balanSys PS Testfemur A links	1
79.02.0042	balanSys PS Testfemur B rechts	1
79.02.0043	balanSys PS Testfemur B links	1
79.02.0044	balanSys PS Testfemur C rechts	1
79.02.0045	balanSys PS Testfemur C links	1
79.02.0046	balanSys PS Testfemur D rechts	1
79.02.0047	balanSys PS Testfemur D links	1
79.02.0048	balanSys PS Testfemur E rechts	1
79.02.0049	balanSys PS Testfemur E links	1



Art. Nr.	Beschreibung	Anz.
71.34.0691	balanSys Meissel 25 mm A-F	1

leggera Testset PS 71.34.9197A

71.34.1066 leggera Testset PS Siebeinsatz


Art. Nr.	Beschreibung	Anz.
71.34.0923	balanSys PS Testeinsatz 64–67/8	1
71.34.0924*	balanSys PS Testeinsatz 64–67/9.0	1
71.34.0925	balanSys PS Testeinsatz 64–67/10.5	1
71.34.0926*	balanSys PS Testeinsatz 64–67/11.5	1
71.34.0927	balanSys PS Testeinsatz 64–67/13	1
71.34.0928	balanSys PS Testeinsatz 64–67/15.5	1
71.34.0929	balanSys PS Testeinsatz 64–67/18	1
71.34.0930	balanSys PS Testeinsatz 64–67/20.5	1
71.34.0931	balanSys PS Testeinsatz 70-75/8	1
71.34.0932*	balanSys PS Testeinsatz 70–75/9	1
71.34.0933	balanSys PS Testeinsatz 70–75/10.5	1
71.34.0934*	balanSys PS Testeinsatz 70–75/11.5	1
71.34.0935	balanSys PS Testeinsatz 70–75/13	1
71.34.0936	balanSys PS Testeinsatz 70-75/15.5	1
71.34.0937	balanSys PS Testeinsatz 70-75/18	1
71.34.0938	balanSys PS Testeinsatz 70-75/20.5	1
71.34.0939	balanSys PS Testeinsatz 80–85/8	1
71.34.0940*	balanSys PS Testeinsatz 80–85/9	1
71.34.0941	balanSys PS Testeinsatz 80-85/10.5	1
71.34.0942*	balanSys PS Testeinsatz 80-85/11.5	1
71.34.0943	balanSys PS Testeinsatz 80–85/13	1
71.34.0944	balanSys PS Testeinsatz 80-85/15.5	1
71.34.0945	balanSys PS Testeinsatz 80–85/18	1
71.34.0946	balanSys PS Testeinsatz 80–85/20.5	1

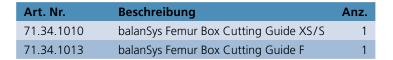
^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.

leggera Testset CR/UC Add. Sizes 71.34.9198A

Kein Bild / 71.34.1056 leggera Set Deckel
Kein Bild / 71.34.1067 leggera Testset CR/UC Add. Sizes Sieb

Art. Nr.	Beschreibung	Anz.
71.34.0818	balanSys Tibiagrössenlehre 59	1
71.34.0801	balanSys Tibiagrössenlehre 62	1

Art. Nr.	Beschreibung	Anz.
71.34.0355	balanSys Testfemur XS links	1
71.34.0356	balanSys Testfemur XS rechts	1
71.34.0504	balanSys Testfemur S links	1
71.34.0505	balanSys Testfemur S rechts	1
71.34.0371	balanSys Testfemur F links	1
71.34.0372	balanSys Testfemur F rechts	1


Beschreibung	Anz.
balanSys CR/UC Testeinsatz 59-62/8	1
balanSys CR/UC Testeinsatz 59-62/9	1
balanSys CR/UC Testeinsatz 59-62/10.5	1
balanSys CR/UC Testeinsatz 59-62/11.5	1
balanSys CR/UC Testeinsatz 59-62/13	1
balanSys CR/UC Testeinsatz 59-62/15.5	1
balanSys CR/UC Testeinsatz 59-62/18	1
	balanSys CR/UC Testeinsatz 59–62/8 balanSys CR/UC Testeinsatz 59–62/9 balanSys CR/UC Testeinsatz 59–62/10.5 balanSys CR/UC Testeinsatz 59–62/11.5 balanSys CR/UC Testeinsatz 59–62/13 balanSys CR/UC Testeinsatz 59–62/15.5

^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.

leggera Testset PS Add. Sizes 71.34.9199A

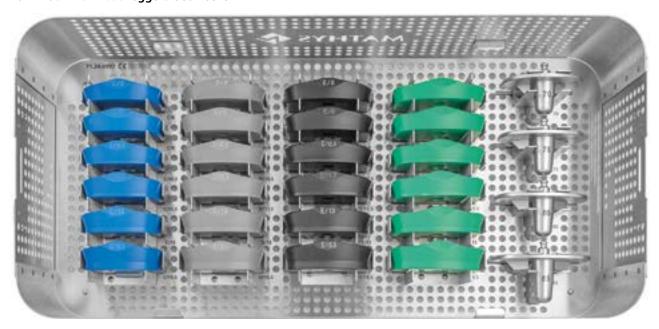
Kein Bild / 71.34.1056 leggera Set Deckel Kein Bild / 71.34.1068 leggera Testset PS Add. Sizes Sieb

Art. Nr.	Beschreibung	Anz.
71.34.0690	balanSys Chisel 22 mm XS/S	1

Art. Nr.	Beschreibung	Anz.
71.34.0382	balanSys PS trial femur XS left	1
71.34.0383	balanSys PS trial femur XS right	1
71.34.0247	balanSys PS trial femur S left	1
71.34.0248	balanSys PS trial femur S right	1
71.34.0399	balanSys PS trial femur F left	1
71.34.0400	balanSys PS trial femur F right	1

Art. Nr.	Beschreibung	Anz.
71.34.0915	balanSys PS Testeinsatz 59–62/8	1
71.34.0916*	balanSys PS Testeinsatz 59–62/9	1
71.34.0917	balanSys PS Testeinsatz 59-62/10.5	1
71.34.0918*	balanSys PS Testeinsatz 59–62/11.5	1
71.34.0919	balanSys PS Testeinsatz 59–62/13	1
71.34.0920	balanSys PS Testeinsatz 59–62/15.5	1
71.34.0921	balanSys PS Testeinsatz 59–62/18	1
71.34.0922	balanSys PS Testeinsatz 59–62/20.5	1

^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.



Art. Nr.	Beschreibung	Anz.
71.34.0809	balanSys 4in1 Schnittblock XS	1
71.34.0810	balanSys 4in1 Schnittblock S	1
71.34.0816	balanSvs 4in1 Schnittblock F	1

Art. Nr.	Beschreibung	Anz.
71.34.0818	balanSys Tibiagrössenlehre 59	1
71.34.0801	balanSys Tibiagrössenlehre 62	1

balanSys Testset RP 71.34.9060A (optional)

Kein Bild / 71.34.1056 leggera Set Deckel

71.34.0997 balanSys Test Set 6-RP Sieb

Art. Nr.	Beschreibung	Anz.
71.34.0297	balanSys RP Tibiatestplateau 70	1
71.34.0298	balanSys RP Tibiatestplateau 75	1
71.34.0299	balanSys RP Tibiatestplateau 80	1
71.34.0300	balanSys RP Tibiatestplateau 85	1

Art. Nr.	Beschreibung	Anz.
71.34.0574	balanSys RP PE-Testeinsatz C/8	1
71.34.0989*	balanSys RP PE-Testeinsatz C/9	1
71.34.0575	balanSys RP PE-Testeinsatz C/10.5	1
71.34.0990*	balanSys RP PE-Testeinsatz C/11.5	1
71.34.0576	balanSys RP PE-Testeinsatz C/13	1
71.34.0577	balanSys RP PE-Testeinsatz C/15.5	1
71.34.0580	balanSys RP PE-Testeinsatz D/8	1
71.34.0991*	balanSys RP PE-Testeinsatz D/9	1
71.34.0581	balanSys RP PE-Testeinsatz D/10.5	1
71.34.0992*	balanSys RP PE-Testeinsatz D/11.5	1
71.34.0582	balanSys RP PE-Testeinsatz D/13	1
71.34.0583	balanSys RP PE-Testeinsatz D/15.5	1
71.34.0586	balanSys RP PE-Testeinsatz E/8	1
71.34.0993*	balanSys RP PE-Testeinsatz E/9	1
71.34.0587	balanSys RP PE-Testeinsatz E/10.5	1
71.34.0994*	balanSys RP PE-Testeinsatz E/11.5	1
71.34.0588	balanSys RP PE-Testeinsatz E/13	1
71.34.0589	balanSys RP PE-Testeinsatz E/15.5	1
71.34.0429	balanSys RP PE-Testeinsatz F/8	1
71.34.0995*	balanSys RP PE-Testeinsatz F/9	1
71.34.0430	balanSys RP PE-Testeinsatz F/10.5	1
71.34.0996*	balanSys RP PE-Testeinsatz F/11.5	1
71.34.0431	balanSys RP PE-Testeinsatz F/13	1
71.34.0432	balanSys RP PE-Testeinsatz F/15.5	1

^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.

balanSys Testset RP 71.34.9060A (optional)

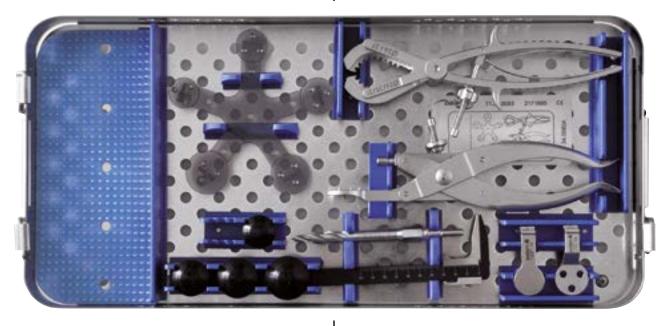
71.34.0998 balanSys Test Set 6-RP Einsatz

Art. Nr.	Beschreibung	Anz.
71.34.0418	balanSys RP Tibiatestplateau 59	1
71.34.0294	balanSys RP Tibiatestplateau 62	1
71.34.0295	balanSys RP Tibiatestplateau 64	1
71.34.0296	balanSys RP Tibiatestplateau 67	1

Art. Nr.	Beschreibung	Anz.
71.34.0413	balanSys RP PE-Testeinsatz XS/8	1
71.34.0981*	balanSys RP PE-Testeinsatz XS/9	1
71.34.0414	balanSys RP PE-Testeinsatz XS/10.5	1
71.34.0982*	balanSys RP PE-Testeinsatz XS/11.5	1
71.34.0415	balanSys RP PE-Testeinsatz XS/13	1
71.34.0416	balanSys RP PE-Testeinsatz XS/15.5	1
71.34.0301	balanSys RP PE-Testeinsatz S/8	1
71.34.0983*	balanSys RP PE-Testeinsatz S/9	1
71.34.0302	balanSys RP PE-Testeinsatz S/10.5	1
71.34.0984*	balanSys RP PE-Testeinsatz S/11.5	1
71.34.0303	balanSys RP PE-Testeinsatz S/13	1
71.34.0304	balanSys RP PE-Testeinsatz S/15.5	1
71.34.0562	balanSys RP PE-Testeinsatz A/8	1
71.34.0985*	balanSys RP PE-Testeinsatz A/9	1
71.34.0563	balanSys RP PE-Testeinsatz A/10.5	1
71.34.0986*	balanSys RP PE-Testeinsatz A/11.5	1
71.34.0564	balanSys RP PE-Testeinsatz A/13	1
71.34.0565	balanSys RP PE-Testeinsatz A/15.5	1
71.34.0568	balanSys RP PE-Testeinsatz B/8	1
71.34.0987*	balanSys RP PE-Testeinsatz B/9	1
71.34.0569	balanSys RP PE-Testeinsatz B/10.5	1
71.34.0988*	balanSys RP PE-Testeinsatz B/11.5	1
71.34.0570	balanSys RP PE-Testeinsatz B/13	1
71.34.0571	balanSys RP PE-Testeinsatz B/15.5	1

^{*} balanSys PE Inlays 9 mm und 11,5 mm sind nur in vitamys erhältlich.

balanSys Patella 3 Stift flach 71.34.0080A


Kein Bild / 71.34.0082

balanSys Deckel Patella 3-Stift flach

balanSys Patella 3 Stift standard 71.34.0081A

Kein Bild / 71.34.0084

balanSys Deckel Patella 3 Stift standard

71.34.0083 balanSys Sieb Patella 3 Stift flach

Art. Nr.	Beschreibung
71.34.0071	balanSys Patella Resektionszange flach

Art. Nr.	Beschreibung
71.34.0708	balanSys Testpatella 3 Stift flach 26
71.34.0075	balanSys Testpatella 3 Stift flach 28
71.34.0076	balanSys Testpatella 3 Stift flach 31
71.34.0077	balanSys Testpatella 3 Stift flach 34
71.34.0078	balanSys Testpatella 3 Stift flach 37

71.34.0085 balanSys Sieb Patella 3 Stift standard

Art. Nr.	Beschreibung
71.34.0070	balanSys Patella Resektionszange erhöht

Art. Nr.	Beschreibung
71.02.3063	balanSys Testpatella 3-Stift 28
71.02.3064	balanSys Testpatella 3-Stift 31
71.02.3065	balanSys Testpatella 3-Stift 34
71.02.3066	balanSys Testpatella 3-Stift 37

Art. Nr.	Beschreibung	Anz.
71.02.2201	balanSys Patella Universalzange	1

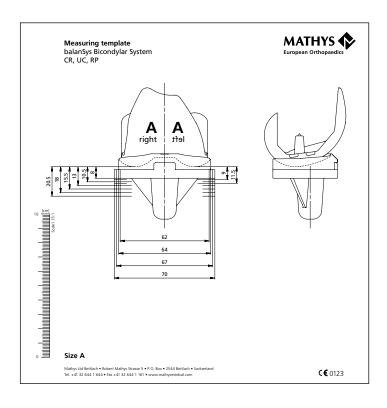
Art. Nr.	Beschreibung	Anz.
71.34.0074	balanSys Patella Bohrlehre zu Zange	1

Art. Nr.	Beschreibung	Anz.
71.34.0073	balanSys Patella Zementierhilfe zu Zange	1

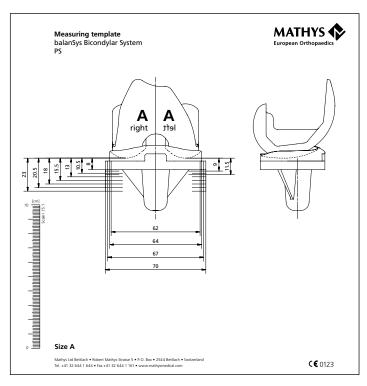
Art. Nr.	Beschreibung	Anz.
71.02.3061	Bohrer 5.5	1

Optionale InstrumenteNICHT Teil der Standardkonfiguration und muss separat bestellt werden:

Art. Nr.	Beschreibung	Anz.
71.34.0079	balanSys Patella Grössenschablone	1


Art. Nr.	Beschreibung	Anz.
71.02.3002	balanSys Patella Schieblehre	1

9. Instrumente


9.1 Röntgenschablonen

balanSys BICON Knee System 330.030.034

Geeignet für CR, UC und RP

balanSys PS Knee System 330.030.035

10. Symbole und Abkürzungen

444				
	Hersteller		Kreuzbanderhaltend (Cruciate Retaining)	
/	Korrekt	UC	Ultrakongruent (Ultra Congruent)	
	Korrekt	PS	Posterior stabilisiert (Posterior Stabilized)	
	Nicht korrekt	RP	Rotationsplattform (Rotating Platform)	
	A classica co	VKB	Vorderes Kreuzband	
	chtung	НКВ	Hinteres Kreuzband	
' 0	Offen	MSB	Mediales Seitenband	
		LSB	Laterales Seitenband	
U	Geschlossen		Tibia-Referenzsystem	
Klick!	Schnappmechanismus einrasten	IFU	Gebrauchsanweisung (Instruction For Use)	

Notizen

Notizen

Australia Mathys Orthopaedics Pty Ltd Artarmon, NSW 2064 Tel: +61 2 9417 9200 info.au@mathysmedical.com

Austria Mathys Orthopädie GmbH 2351 Wiener Neudorf Tel: +43 2236 860 999 info.at@mathysmedical.com

Belgium Mathys Orthopaedics Belux N.V.-S.A.

> 3001 Leuven Tel: +32 16 38 81 20 info.be@mathysmedical.com

France Mathys Orthopédie S.A.S 63360 Gerzat Tel: +33 4 73 23 95 95 info.fr@mathysmedical.com

Germany Mathys Orthopädie GmbH

«Centre of Excellence Sales» Bochum

44809 Bochum Tel: +49 234 588 59 0 sales.de@mathysmedical.com

«Centre of Excellence Ceramics» Mörsdorf

07646 Mörsdorf/Thür. Tel: +49 364 284 94 0 info.de@mathysmedical.com

«Centre of Excellence Production» Hermsdorf

07629 Hermsdorf Tel: +49 364 284 94 110 info.de@mathysmedical.com Italy Mathys Ortopedia S.r.l.

20141 Milan

Tel: +39 02 4959 8085 info.it@mathysmedical.com

Japan Mathys KK

Tokyo 108-0075 Tel: +81 3 3474 6900 info.jp@mathysmedical.com

New Zealand Mathys Ltd.

Auckland

Tel: +64 9 478 39 00 info.nz@mathysmedical.com

Netherlands Mathys Orthopaedics B.V.

3001 Leuven

Tel: +31 88 1300 500 info.nl@mathysmedical.com

P. R. China Mathys (Shanghai) Medical Device Trading Co., Ltd

Shanghai, 200041 Tel: +86 21 6170 2655 info.cn@mathysmedical.com

Switzerland Mathys (Schweiz) GmbH

2544 Bettlach

Tel: +41 32 644 1 458 info@mathysmedical.com

United Kingdom Mathys Orthopaedics Ltd

Alton, Hampshire GU34 2QL Tel: +44 8450 580 938 info.uk@mathysmedical.com

Local Marketing Partners in over 30 countries worldwide...

